Mixing Sodium-Chloride-Rich Food Waste Compost with Livestock Manure Composts Enhanced the Agronomic Performance of Leaf Lettuce

2021 ◽  
Vol 13 (23) ◽  
pp. 13223
Author(s):  
Jun-Woo Yang ◽  
Deogratius Luyima ◽  
Seong-Jin Park ◽  
Seong-Heon Kim ◽  
Taek-Keun Oh

Food waste generated at the consumer level constitutes a gigantic portion of the total amount of food wasted/lost and valorisation is touted as the most sustainable way of managing the generated waste. While food waste valorisation encompasses several methods, composting is the cheapest technique that can produce stabilised carbon-rich soil amendments. The food waste generated at the consumer level, however, is laden with sodium chloride. The compost produced from such waste has the potential of inducing saline and or sodic conditions in the soil, resultantly impeding proper crop growth and yield. Due to the scarcity of plausible means of eradicating sodium chloride from the food waste before composting, the idea of mixing the composted food waste with other low sodium chloride-containing composts to produce a food waste compost-containing amalgam with a high fertiliser potential was mulled in this study. The study then assessed the effects of mixing sodium-chloride-rich food waste compost with the nutritious and low sodium chloride-containing livestock manure composts on the yield and quality of leaf lettuce. Mixing food waste compost with livestock manure composts in the right proportions created mixed composts that produced a higher lettuce yield than both the pure livestock manure composts and food waste compost. The mixed composts also produced leaf lettuce with higher chlorophyll content and, thus, better marketability and lower nitrate content (with higher health value) than the pure livestock manure composts.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1220
Author(s):  
Giulia Conversa ◽  
Anna Bonasia ◽  
Corrado Lazzizera ◽  
Antonio Elia

The floating system (FL) is a common soilless method for baby-leaf production, whereas the ebb and flow system (EF) has been proposed as an alternative. Both of them allow managing plant saline stress while preventing reduction in plant growth and yield and increasing product quality. The oak-leaf lettuce response to the growing conditions (hydroponics, salinity) in interaction with climate and genotype has been little studied. Two experiments were carried out with two oak-leaf cultivars (green- and red-colored type) grown in FL and EF systems at two levels of nutrient solution (NS) electrical conductivity (EC) (EC = 2.5 and 3.5 dS m−1; EC2.5, EC3.5, respectively) under autumn and late-spring conditions. The EF system caused an increase in salinity in the substrate where roots mainly develop, so it overcomes the effect of the EC3.5 treatment. In the autumn cycle, irrespective of the EC, EF-grown plants had improved leaf thickness (specific leaf area), color, and antioxidative (total phenol and carotenoid contents) properties; however, a reduction in yield was observed in the most productive cultivar (green type). In late spring, higher yield and product quality (processability, nitrate content) were obtained at the expense of color, with the FL showing the best productivity in the green type cultivar. The red type cultivar had higher dry mass, phenol, and carotenoid concentrations.


2020 ◽  
Vol 12 (16) ◽  
pp. 6525
Author(s):  
Kai Victor Hansen ◽  
Lukasz Andrzej Derdowski

The problem of unsustainable food consumption among vulnerable residents of nursing homes who suffer from dementia is often multifaceted. From an individual perspective, people with dementia who do not finish their meals are likely to encounter serious health issues associated with malnutrition. Moreover, at the institutional level, nursing homes generate tons of nonrecoverable food waste each year, impairing not only their economic position but also the natural and social environment at large. The purpose of this study is to explore the possibility of reducing food waste in Norwegian nursing homes by appraising how large this reduction could be as one replaces traditional dining white porcelain with plates with diverse color combinations. A quasi-experimental method was adopted. The results of the pilot study were extrapolated to the annual amount of food wasted at the national level. The findings indicate that, on average, 26% of food was thrown away when served on white plates compared to only 9% when served on one of the colored plate options tested. Nationally, approximately 992.6 tons of food per year could potentially be saved with only a single change, ultimately ameliorating the unsustainable food consumption problem among residents of nursing homes.


1991 ◽  
Vol 69 (4) ◽  
pp. 507-511 ◽  
Author(s):  
John C. Passmore ◽  
Agnes E. Jimenez

The effect of selective dietary sodium and (or) chloride loading on blood pressure and renal blood flow (RBF) in the rat angiotensin II (AII) model of hypertension was determined. AII (200 ng/min) or saline was infused intraperitoneally. Diets were provided with either high or low concentrations of sodium, chloride or both ions for 22 days. The blood pressure of saline-treated animals was not increased by the high sodium chloride diet. Animals on a high sodium, high chloride diet had a significantly greater increase of blood pressure at 8, 15, 18, and 22 days of AII infusion compared with AII-treated animals on a low sodium, low chloride diet (p < 0.05). Selective dietary loading of either high sodium or chloride in AII-treated rats produced no greater elevation of blood pressure than AII with the low sodium, low chloride diet. Selective high dietary chloride was associated with a lower RBF in AII- and vehicle-treated rats compared with low dietary chloride. The chloride effect on RBF was greater in AII-treated animals. In conclusion, both sodium and chloride are necessary to produce the maximum increase of blood pressure in AII animals. AII enhances the decreased RBF induced by dietary chloride.Key words: angiotensin II, sodium chloride, blood pressure.


Mycobiology ◽  
2013 ◽  
Vol 41 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Eun-Young Jo ◽  
Jae-Lyoung Cheon ◽  
Johng-Hwa Ahn

2018 ◽  
Vol 252 ◽  
pp. 76-82 ◽  
Author(s):  
Leichang Cao ◽  
Iris K.M. Yu ◽  
Season S. Chen ◽  
Daniel C.W. Tsang ◽  
Lei Wang ◽  
...  
Keyword(s):  

2018 ◽  
Vol 16 (3) ◽  
pp. e0802 ◽  
Author(s):  
Saad Farouk ◽  
Sally A. Arafa

Salinity is a global issue threatening land productivity and food production. The present study aimed to examine the role of sodium nitroprusside (SNP) on the alleviation of NaCl stress on different parameters of canola (Brassica napus L.) plant growth, yield as well as its physiological and anatomical characteristics. Canola plants were grown under greenhouse conditions in plastic pots and were exposed to 100 mM NaCl. At 50 and 70 days from sown, plants were sprayed with SNP (50 and 100 µM) solutions under normal or salinity condition. Growth and yield characters as well as some biochemical and anatomical changes were investigated under the experimental conditions. Salinity stress caused an extremely vital decline in plant growth and yield components. A significant increase was found in membrane permeability, lipid peroxidation, hydrogen peroxide, sodium, chloride, proline, soluble sugars, ascorbic and phenol in canola plants under salinity stress. Under normal conditions, SNP application significantly increased all studies characters, except sodium, chloride, hydrogen peroxide, lipid peroxidation, membrane permeability that markedly reduced. Application of SNP to salt-affected plants mitigated the injuries of salinity on plant growth, yield, and improved anatomical changes. The present investigation demonstrated that SNP has the potential to alleviate the salinity injurious on canola plants.


2016 ◽  
pp. 23-28
Author(s):  
Andrea Balláné Kovács ◽  
Rita Kremper ◽  
Ida Kincses ◽  
Ágnes Leviczky

A greenhouse pot experiment was conducted to compare the effects of manure with different origin (horse, cattle), various bedding materials (straw, sawdust) and diverse doses (30 t ha-1, 60 t ha-1) and the impact of food waste compost on the plant growth and the available plant nutrient content of soil. The study was conducted on humic sandy soil and consisted of 9 treatments in a randomized complete block design with four replications. Spinach (Spinacia oleracea L.) was grown as the test crop. The treatments were: 1. unfertilized control; 2. horse manure with straw (30 t ha-1); 3. horse manure with sawdust (30 t ha-1); 4. cattle manure (30 t ha-1); 5 food waste compost (30 t ha-1); 6. horse manure with straw (60 t ha-1); 7. horse manure with sawdust (60 t ha-1); 8. cattle manure (60 t ha-1); 9. food waste compost (60 t ha-1). Plant growth was monitored for 4 weeks. Shoot and root weights per pot were measured, total biomass weight per pot were counted. On the basis of the results it can be concluded, that among treatments the application of horse manure with straw enhanced spinach growth most significantly compared to other treatments and to the non-treated control, resulted the highest weights of leaves and roots of spinach. At the same time even small dose (30 t ha-1) of this fertilizer caused increased plant available nitrogen and phosphorus of soil and the higher dosage further increased these values. The horse manure with sawdust applied in lower dose did not alter the leaves and roots weights, but higher portion (60 t ha-1) caused significantly decreased plant biomass. The results proved that the bedding material may significantly alter the composition of manure and may change the plant nutrition effect of organic fertilizer. Cattle manure and food waste compost in both applied doses enhanced plant growth. Both fertilizers increased the plant available nitrogen forms and phosphorus content of soil, but cattle manure caused higher increase.


Sign in / Sign up

Export Citation Format

Share Document