scholarly journals Simulation-Optimization for the Planning of Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence Metaheuristics

2021 ◽  
Vol 13 (24) ◽  
pp. 13551
Author(s):  
Mohamed Hussein ◽  
Abdelrahman E. E. Eltoukhy ◽  
Amos Darko ◽  
Amr Eltawil

Off-site construction is a modern construction method that brings many sustainability merits to the built environment. However, the sub-optimal planning decisions (e.g., resource allocation, logistics and overtime planning decisions) of off-site construction projects can easily wipe away their sustainability merits. Therefore, simulation modelling—an efficient tool to consider the complexity and uncertainty of these projects—is integrated with metaheuristics, developing a simulation-optimization model to find the best possible planning decisions. Recent swarm intelligence metaheuristics have been used to solve various complex optimization problems. However, their potential for solving the simulation-optimization problems of construction projects has not been investigated. This research contributes by investigating the status-quo of simulation-optimization models in the construction field and comparing the performance of five recent swarm intelligence metaheuristics to solve the stochastic time–cost trade-off problem with the aid of parallel computing and a variance reduction technique to reduce the computation time. These five metaheuristics include the firefly algorithm, grey wolf optimization, the whale optimization algorithm, the salp swarm algorithm, and one improved version of the well-known bat algorithm. The literature analysis of the simulation-optimization models in the construction field shows that: (1) discrete-event simulation is the most-used simulation method in these models, (2) most studies applied genetic algorithms, and (3) very few studies used computation time reduction techniques, although the simulation-optimization models are computationally expensive. The five selected swarm intelligence metaheuristics were applied to a case study of a bridge deck construction project using the off-site construction method. The results further show that grey wolf optimization and the improved bat algorithm are superior to the firefly, whale optimization, and salp swarm algorithms in terms of the obtained solutions’ quality and convergence behaviour. Finally, the use of parallel computing and a variance reduction technique reduces the average computation time of the simulation-optimization models by about 87.0%. This study is a step towards the optimum planning of off-site construction projects in order to maintain their sustainability advantages.

2013 ◽  
Vol 464 ◽  
pp. 352-357
Author(s):  
Pasura Aungkulanon

The engineering optimization problems are large and complex. Effective methods for solving these problems using a finite sequence of instructions can be categorized into optimization and meta-heuristics algorithms. Meta-heuristics techniques have been proved to solve various real world problems. In this study, a comparison of two meta-heuristic techniques, namely, Global-Best Harmony Search algorithm (GHSA) and Bat algorithm (BATA), for solving constrained optimization problems was carried out. GHSA and BATA are optimization algorithms inspired by the structure of harmony improvisation search process and social behavior of bat echolocation for decision direction. These algorithms were implemented under different natures of three optimization, which are single-peak, multi-peak and curved-ridge response surfaces. Moreover, both algorithms were also applied to constrained engineering problems. The results from non-linear continuous unconstrained functions in the context of response surface methodology and constrained problems can be shown that Bat algorithm seems to be better in terms of the sample mean and variance of design points yields and computation time.


Author(s):  
Janusz Sobecki

In this paper a comparison of a few swarm intelligence algorithms applied in recommendation of student courses is presented. Swarm intelligence algorithms are nowadays successfully used in many areas, especially in optimization problems. To apply each swarm intelligence algorithm in recommender systems a special representation of the problem space is necessary. Here we present the comparison of efficiency of grade prediction of several evolutionary algorithms, such as: Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Intelligent Weed Optimization (IWO), Bee Colony Optimization (BCO) and Bat Algorithm (BA).


2021 ◽  
Vol 11 (18) ◽  
pp. 8330
Author(s):  
Achilles D. Boursianis ◽  
Maria S. Papadopoulou ◽  
Marco Salucci ◽  
Alessandro Polo ◽  
Panagiotis Sarigiannidis ◽  
...  

Swarm Intelligence (SI) Algorithms imitate the collective behavior of various swarms or groups in nature. In this work, three representative examples of SI algorithms have been selected and thoroughly described, namely the Grey Wolf Optimizer (GWO), the Whale Optimization Algorithm (WOA), and the Salp Swarm Algorithm (SSA). Firstly, the selected SI algorithms are reviewed in the literature, specifically for optimization problems in antenna design. Secondly, a comparative study is performed against widely known test functions. Thirdly, such SI algorithms are applied to the synthesis of linear antenna arrays for optimizing the peak sidelobe level (pSLL). Numerical tests show that the WOA outperforms the GWO and the SSA algorithms, as well as the well-known Particle Swarm Optimizer (PSO), in terms of average ranking. Finally, the WOA is exploited for solving a more computational complex problem concerned with the synthesis of an dual-band aperture-coupled E-shaped antenna operating in the 5G frequency bands.


2011 ◽  
Vol 148-149 ◽  
pp. 134-137 ◽  
Author(s):  
Pei Wei Tsai ◽  
Jeng Shyang Pan ◽  
Bin Yih Liao ◽  
Ming Jer Tsai ◽  
Vaci Istanda

Inspired by Bat Algorithm, a novel algorithm, which is called Evolved Bat Algorithm (EBA), for solving the numerical optimization problem is proposed based on the framework of the original bat algorithm. By reanalyzing the behavior of bats and considering the general characteristics of whole species of bat, we redefine the corresponding operation to the bats’ behaviors. EBA is a new method in the branch of swarm intelligence for solving numerical optimization problems. In order to analyze the improvement on the accuracy of finding the near best solution and the reduction in the computational cost, three well-known and commonly used test functions in the field of swarm intelligence for testing the accuracy and the performance of the algorithm, are used in the experiments. The experimental results indicate that our proposed method improves at least 99.42% on the accuracy of finding the near best solution and reduces 6.07% in average, simultaneously, on the computational time than the original bat algorithm.


2010 ◽  
Vol 13 (3) ◽  
pp. 520-532 ◽  
Author(s):  
A. Sedki ◽  
D. Ouazar

This paper presents some simulation–optimization models for groundwater resources management. These models couple two of the most successful global optimization techniques inspired by swarm intelligence, namely particle swarm optimization (PSO) and ant colony optimization (ACO), with one of the most commonly used groundwater flow simulation code, MODFLOW. The coupled simulation–optimization models are formulated and applied to three different groundwater management problems: (i) maximization of total pumping problem, (ii) minimization of total pumping to contain contaminated water within a capture zone and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods. The results of PSO- and ACO-based models are compared with those produced by other methods previously presented in the literature for the three case studies considered. It is found that PSO and ACO are promising methods for solving groundwater management problems, as is their ability to find optimal or near-optimal solutions.


Author(s):  
Ashish Kumar Tripathi ◽  
Himanshu Mittal ◽  
Pranav Saxena ◽  
Siddharth Gupta

Abstract In the era of Web 2.0, the data are growing immensely and is assisting E-commerce websites for better decision-making. Collaborative filtering, one of the prominent recommendation approaches, performs recommendation by finding similarity. However, this approach fails in managing large-scale datasets. To mitigate the same, an efficient map-reduce-based clustering recommendation system is presented. The proposed method uses a novel variant of the whale optimization algorithm, tournament selection empowered whale optimization algorithm, to attain the optimal clusters. The clustering efficiency of the proposed method is measured on four large-scale datasets in terms of F-measure and computation time. The experimental results are compared with state-of-the-art map-reduce-based clustering methods, namely map-reduce-based K-means, map-reduce-based bat algorithm, map-reduce-based Kmeans particle swarm optimization, map-reduce-based artificial bee colony, and map-reduce-based whale optimization algorithm. Furthermore, the proposed method is tested as a recommendation system on the publicly available movie-lens dataset. The performance validation is measured in terms of mean absolute error, precision and recall, over a different number of clusters. The experimental results assert that the proposed method is a permissive approach for the recommendation over large-scale datasets.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 786
Author(s):  
Yenny Villuendas-Rey ◽  
Eley Barroso-Cubas ◽  
Oscar Camacho-Nieto ◽  
Cornelio Yáñez-Márquez

Swarm intelligence has appeared as an active field for solving numerous machine-learning tasks. In this paper, we address the problem of clustering data with missing values, where the patterns are described by mixed (or hybrid) features. We introduce a generic modification to three swarm intelligence algorithms (Artificial Bee Colony, Firefly Algorithm, and Novel Bat Algorithm). We experimentally obtain the adequate values of the parameters for these three modified algorithms, with the purpose of applying them in the clustering task. We also provide an unbiased comparison among several metaheuristics based clustering algorithms, concluding that the clusters obtained by our proposals are highly representative of the “natural structure” of data.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


Sign in / Sign up

Export Citation Format

Share Document