scholarly journals Numerical Investigation on the Dynamic Performance of Steel–Concrete Composite Continuous Rigid Bridges Subjected to Moving Vehicles

2021 ◽  
Vol 13 (24) ◽  
pp. 13666
Author(s):  
Binqiang Guo ◽  
Renzhi Wang ◽  
Chen Lu ◽  
Weijian Shi ◽  
Qingfei Gao

Assembly construction is the main feature of industrialized bridges, and π-shaped section steel–concrete composites that are continuously rigid have been widely used in engineering fields in recent years; however, their dynamic responses and corresponding impact coefficients in positive and negative moment regions need to be further studied. First, considering the interface slip model, we established a finite element model for the π-shaped continuous region section of the steel–concrete composite on the Sutai Expressway Tongfu No. 3 viaduct. Second, the bridge deck unevenness parameters were generated by preparing a MATLAB program with random calculations and were added to the bridge deck as the excitation load along with the vehicle load. Such parameters are defined on the basis of considering the vertical degrees of freedom of the four wheels and of one vehicle rigid body. Finally, we analyzed the displacement or stress impact coefficients as the dynamic response index of the bridge by adjusting the vehicle travel speeds, vehicle weights, interface slip stiffness values, and deck unevenness values. The results show that the change in vehicle travel speed and the change in vehicle load weight have some influence on the change in the dynamic effect of the combined beam, but this change is not significant. Moreover, the unevenness and interface slip strength changes have a large effect on the dynamic effect of the combination beam, which can significantly change the impact coefficient of the combination beam bridge. The worse the unevenness of the bridge deck is, the lower the grade of interface slip for the steel–concrete composite bridges and the higher the impact coefficient. We calculated the recommended impact coefficient values of the steel–concrete composite bridge based on the specifications for various countries, and they range from 1.16 to 1.4; such values are similar to the finite element calculation results.

2012 ◽  
Vol 433-440 ◽  
pp. 5896-5901
Author(s):  
Li Kun Guan ◽  
Xin Yu Zhang

Objective: To establish a finite element model for ladle turret’s supporting arm. Verify the accuracy of finite element analysis, and accurate information cause of crack. Methods: Use ANSYS finite element analysis software to perform a solution of the supporting arm at loaded full ladle . By mean of strain measuements ,impact coefficient was obtained,and presents an analytical study of static strength of the supporting arm. Result:The greater the load is, the smaller the impact factor is. Verify the accuracy of the finite element method by on-site response test. Accordingly, it improves the supporting arm on the structure by effective basis.


2013 ◽  
Vol 331 ◽  
pp. 7-10
Author(s):  
Yu Bai Zhang ◽  
Hui Qun Yuan ◽  
Ming Xuan Liang

Finite element model of helical gear meshing of large burden marine is built based on explicit dynamics finite element method, dynamics stress variation of helical gear tooth is simulated under multiple working conditions, research is focused on the impact of changes in working conditions on the dynamic stress of the tooth root. The results show that helical gear pair speed and center distance error have great impact on dynamic stress of tooth root. The results provide reference for dynamic performance optimization of marine gears.


2013 ◽  
Vol 423-426 ◽  
pp. 2127-2131
Author(s):  
Jui Pin Hung ◽  
Wei Chu Lin ◽  
Tzou Lung Luo ◽  
Yu Sheng Lai

This study was aimed to investigate dynamic characteristics of a milling machine with horizontal spindle tooling system, which was feed through the linear feeding mechanism combined with the sliding guides and linear roller guide modulus. To predict the dynamic characteristics, we created finite element model of the milling machine with the introduction of the contact stiffness defined at the sliding and rolling interface, respectively. The results of the finite element simulations reveal that linear guides with different preloads greatly affect the dynamic responses of the horizontal spindle tool. The maximum dynamic compliance can be increased by 7.4 % in X-axis direction and increased by 12 % in Y-axis direction, respectively when the linear guides are changed from low to high preload. Overall, current results clearly illustrate that the proposed modeling approach of feeding mechanism can quantify the preload effect of the guideway system on the dynamic performance of a milling machine.


Author(s):  
Deren Ma ◽  
Hamid Lankarani

Abstract Computer models of the human body are robust tools for gaining insight into the gross motion of ground vehicle or aircraft occupants and evaluating the loads and deformations of their critical parts. The knowledge of occupant responses will help in the determination of the type and probable causes of injuries that may be sustained during a crash. One important aspect in crash analysis is how the large motion of the relatively rigid segments of an occupant, such as the limbs, and the small deformations of flexible segments, such as the spine column, are inter-related. To this end, a general methodology for kineto-static analysis of multibody systems with flexible structures undergoing large motion and complicated structural deformations is developed. Rigid multibody dynamics is used to predict the gross motions and displacements at the boundaries. Finite element analysis is then performed to determine the corresponding loads and deformations of the entire structure. Based on this methodology, a multibody model of the occupant with a finite element model of the lumbar spine is developed for a Hybrid II (Part 572) anthropomorphic test dummy. The analytical results obtained from the code are correlated with the experimental results from the impact sled tests. Comparison of the results has shown much closer match between the analyses and the experiments.


2018 ◽  
Vol 232 ◽  
pp. 04003
Author(s):  
Guilin Chen ◽  
Yong Wu ◽  
Qijun Pan ◽  
Fuli Ning ◽  
Peng Jiang

This paper uses the professional finite element analysis software ANSYS to process a certain type of power regulating inverter. The overall finite element model of the inverter is established then the three-way impact condition is analysed according to the requirements of GJB 1060.1-91. Through the modal analysis in ANSYS software, the natural frequency and natural vibration mode of the inverter are calculated. Based on modal analysis of the inverter, the DDAM shock spectrum analysis function is used to analyse the impact condition of the inverter. Through the calculation of the impact condition, the deformation and stress state of the inverter structure under various working conditions are obtained. By analysing the calculation results, the weak position of the inverter structure is found and the corresponding optimization scheme is proposed to improve the dynamic performance and improve the electron. The overall dynamic performance of the inverter cabinet also provides an important reference for the design of subsequent electronic cabinets.


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


Author(s):  
Hervé Algrain ◽  
Calogero Conti ◽  
Pierre Dehombreux

Abstract Finite Element Model Updating has for objective to increase the correlation between the experimental dynamic responses of a structure and the predictions from a model. Among different initial choices, these procedures need to establish a set of representative parameters to be updated in which some are in real error and some are not. It is therefore important to select the correct properties that have to be updated to ensure that no marginal corrections are introduced. In this paper the standard localization criteria are presented and a technique to separate the global localization criteria in family-based criteria for damped structures is introduced. The methods are analyzed and applied to both numerical and experimental examples; a clear enhancement of the results is noticed using the family-based criteria. A simple way to qualify the stability of a localization method to noise is presented.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


Sign in / Sign up

Export Citation Format

Share Document