scholarly journals On Energies of Charged Particles with Magnetic Field

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1204
Author(s):  
Muhammed Talat Sariaydin

The present paper is about magnetic curves of spherical images in Euclidean 3-space. We obtain the Lorentz forces of the spherical images and then we determine if the spherical images have a magnetic curve or not. If a spherical image has a magnetic curve, then after presenting some basic concepts about the energy of a charged particle whose trajectory is that magnetic curve and the kinetic energy of a moving particle whose trajectory is the spherical indicatrix, we find the energy of the charged particle and the kinetic energy of the moving particle.

Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
S. P. Adhya ◽  
A. Adler ◽  
...  

Abstract The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($$\left| y\right| < 0.5$$y<0.5) are measured in proton-proton collisions at $$\sqrt{s}$$s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $$\mathrm{K}^{0}_{S}$$KS0, $$\Lambda $$Λ, $$\Xi $$Ξ, and $$\Omega $$Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1668-1674
Author(s):  
MOTOHIKO KUSAKABE ◽  
TOSHITAKA KAJINO ◽  
RICHARD N. BOYD ◽  
TAKASHI YOSHIDA ◽  
GRANT J. MATHEWS

Spectroscopic observations of metal poor halo stars give an indication of a possible primordial plateau of 6 Li abundance as a function of metallicity similar to that for 7 Li . The inferred abundance of 6 Li is ~1000 times larger than that predicted by standard big bang nucleosynthesis (BBN) for the baryon-to-photon ratio inferred from the WMAP data, and that of 7 Li is about 3 times smaller than the prediction. We study a possible solution to both the problems of underproduction of 6 Li and overproduction of 7 Li in BBN. This solution involves a hypothetical massive, negatively-charged particle that would bind to the light nuclei produced in BBN. The particle gets bound to the existing nuclei after the usual BBN, and a second epoch of nucleosynthesis can occur among nuclei bound to the particles. We numerically carry out a fully dynamical BBN calculation, simultaneously solving the recombination and ionization processes of negatively-charged particles by normal and particle-bound nuclei as well as many possible nuclear reactions among them. It is confirmed that BBN in the presence of these hypothetical particles can solve the two Li abundance problems simultaneously.


Author(s):  
J. Y. Rau ◽  
B. W. Su ◽  
K. W. Hsiao ◽  
J. P. Jhan

A spherical camera can observe the environment for almost 720 degrees’ field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera’s original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.


Author(s):  
Xing Zhang ◽  
Jianhua Zheng ◽  
Ji Yan ◽  
Zhenghua Yang ◽  
Ming Su ◽  
...  

Charged particle diagnostics is one of the required techniques for implosion areal density diagnostics at the SG-III facility. Several proton spectrometers are under development, and some preliminary areal density diagnostics have been carried out. The response of the key detector, CR39, to charged particles was investigated in detail. A new track profile simulation code based on a semi-empirical model was developed. The energy response of the CR39 detector was calibrated with the accelerator protons and alphas from a 241Am source. A proton spectrometer based on the filtered CR39 detector was developed, and D–D primary proton measurements were implemented. A step range filter spectrometer was developed, and preliminary areal density diagnostics was carried out. A wedged range filter spectrometer array made of Si with a higher resolution was designed and developed at the SG-III facility. A particle response simulation code by the Monte Carlo method and a spectra unfolding code were developed. The capability was evaluated in detail by simulations.


Author(s):  
J. Byrne

SynopsisThe adiabatic invariants associated with the motion of charged particles, trapped in electromagnetic fields with rotational and reflection symmetry, have been studied using classical methods based on the Hamilton-Jacobi equation. It has been shown that results, valid for trapping in purely magnetic configurations, may be applied in the analysis of electromagnetic charged particle traps, provided that suitably modified expressions are used for the angular frequencies in the various dynamical modes. Attention is drawn to circumstances in which the adiabatic conditions may be violated because of cancellation of electric and magnetic terms in the equations.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040026
Author(s):  
A. A. Kirillov ◽  
E. P. Savelova

We show that the scattering of radiation on a traversable wormhole forms a vortex in the radiation energy flux. Then, if the wormhole possesses also a magnetic fields, the vortex accelerates charged particles along the magnetic lines and such a system works as an accelerator. If the vortex is small, the system reaches the stationary state, when the income of the kinetic energy reradiates completely in the form of the synchrotron radiation. Such a mechanism allows us to relate a part of observed sources of the synchrotron radiation to magnetic wormholes.


2012 ◽  
Vol 20 (5) ◽  
pp. 16-22 ◽  
Author(s):  
John A. Notte

From the nearly mass-less electron to massive ions, charged particle microscopes have diversified over the last few decades. At present, a broad range of available charged particles with varying masses fulfill many applications: from imaging to analysis to nanofabrication.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650101 ◽  
Author(s):  
Amine Yilmaz ◽  
Emin Özyilmaz

In this work, we investigate relationships between Darboux and type-2 Bishop frames in Euclidean space. Then, we obtain the geodesic curvature of the spherical image curve of the Darboux vector of the type-2 Bishop frame. Also, we give transition matrix between the Darboux and type-2 Bishop frames of the type-2 Bishop frames of the spherical images of the edges [Formula: see text] and [Formula: see text]. Finally, we express some interesting relations and illustrate of the examples by the aid Maple programe.


A detailed investigation has been made of a nuclear disintegration produced by a charged particle, almost certainly a proton, of energy ~20 000 GeV. The disintegration, of type 22 + 76 p , was recorded in a stack of plates exposed at ~90 000 ft. The jet of secondary charged particles, and the associated cascade of electrons and photons, can be followed through the emulsion of twenty-two plates. The observations lead to a value 0⋅25 for the ratio of neutral π -particles to charged shower particles produced in the disintegration. If π 0 -mesons are produced in high-energy nuclear interactions with a frequency half that of the charged π -mesons, and if 10% of the shower particles are assumed to be protons, the present results indicate that 40 % of the charged shower particles are other than π -mesons. As there is no evidence for the existence of nucleon pairs, it is reasonable to identify these other particles with the heavy k -particles. The corresponding ratio of the numbers of charged k - to π-mesons, N K ±/ N π ±, is equal to 0⋅80±0·4. The interaction length of the shower particles from the event, measured without distinction between the different types of mesons which may be among them, is shown to be very nearly equal to the value for nucleons. It follows that the k -mesons, which constitute a large fraction of the shower particles, interact strongly with nuclei.


Sign in / Sign up

Export Citation Format

Share Document