scholarly journals Overshoot Elimination for Control Systems with Parametric Uncertainty via a PID Controller

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1092 ◽  
Author(s):  
Alexey Tsavnin ◽  
Semen Efimov ◽  
Sergey Zamyatin

One of the key performance requirements for different control systems is non-overshooting step response, so that the controllable value should not overcome the reference value within a transient process. The problem of providing a non-overshooting step response was examined in this paper. Despite much scientific research being dedicated to the overshoot elimination problem, there are little to no results regarding parametric uncertainty for the discussed problem. Consideration of parametric uncertainty, particularly in the form of interval-given parameters, is essential, since in many physical processes, electronic devices and control systems parameter values can be obtained with acceptable error, and they can vary under different conditions. The main result of our research is the development of a proportional-integral-derivative (PID)-controller tuning approach for systems with interval-given parameters that provides a non-overshooting step response for such classes of control systems. This paper investigates analytical conditions and constraints for linear time invariant (LTI) systems in order to have no overshoot, enhances them with respect to parametric uncertainty, and formulates rules for tuning choices of parameters.

Author(s):  
M. Sepasi ◽  
F. Sassani ◽  
R. Nagamune

This paper proposes a technique to model uncertainties associated with linear time-invariant systems. It is assumed that the uncertainties are only due to parametric variations caused by independent uncertain variables. By assuming that a set of a finite number of rational transfer functions of a fixed order is given, as well as the number of independent uncertain variables that affect the parametric uncertainties, the proposed technique seeks an optimal parametric uncertainty model as a function of uncertain variables that explains the set of transfer functions. Finding such an optimal parametric uncertainty model is formulated as a noncovex optimization problem, which is then solved by a combination of a linear matrix inequality and a nonlinear optimization technique. To find an initial condition for solving this nonconvex problem, the nonlinear principal component analysis based on the multidimensional principal curve is employed. The effectiveness of the proposed technique is verified through both illustrative and practical examples.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Shinji Hara ◽  
Toni Bakhtiar ◽  
Masaaki Kanno

This paper is concerned with the inherentℋ2tracking performance limitation of single-input and multiple-output (SIMO) linear time-invariant (LTI) feedback control systems. The performance is measured by the tracking error between a step reference input and the plant output with additional penalty on control input. We employ the plant augmentation strategy, which enables us to derive analytical closed-form expressions of the best achievable performance not only for discrete-time system, but also for continuous-time system by exploiting the delta domain version of the expressions.


2016 ◽  
Vol 67 (3) ◽  
pp. 160-168 ◽  
Author(s):  
Stepan Ozana ◽  
Tomas Docekal

Abstract This paper deals with design of PID controller with the use of methods of global optimization implemented in Matlab environment and Optimization Toolbox. It is based on minimization of a chosen integral criterion with respect to additional requirements on control quality such as overshoot, phase margin and limits for manipulated value. The objective function also respects user-defined weigh coefficients for its particular terms for a different penalization of individual requirements that often clash each other such as for example overshoot and phase margin. The described solution is designated for continuous linear time-invariant static systems up to 4th order and thus efficient for the most of real control processes in practice.


2002 ◽  
Vol 30 (5) ◽  
pp. 301-317
Author(s):  
Branko Saric

The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.


Sign in / Sign up

Export Citation Format

Share Document