scholarly journals Comparison of the Compressive and Tensile Strength Values of Rocks Obtained on the Basis of Various Standards and Recommendations

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1163
Author(s):  
Rafał Misa ◽  
Andrzej Nowakowski

The objective of the current study was to compare results relating to the compressive and tensile strength of rocks obtained during research undertaken according to Polish Standards (as part of the European standards known as Eurocodes), American Society for Testing and Materials (ASTM) Standards, and the recommendations of the International Society for Rock Mechanics (ISRM). A total of 130 experiments for uniaxial compression on axisymmetric samples, point loads, and transverse compression (so-called Brazilian tests) were performed on rock samples comprising granite, limestone, and sandstone. Geometric properties of the samples were selected depending on the applied research method, and the relationship between the specimen’s slenderness and shape, and the obtained values of compressive and tensile strength, were analyzed. The results of the study showed that values of compressive and tensile strength obtained in a laboratory depend significantly on specimen slenderness, different values of which are imposed by various ISRM standards and recommendations, wherein this sensitivity was much higher in the case of compressive strength. The study also raised doubt about the usefulness of the so-called point load test as a method for determination of the compressive strength of rocks and potential estimation of the tensile strength.

2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2021 ◽  
Vol 36 (1) ◽  
pp. 111-119
Author(s):  
Behzad Jafari Mohammadabadi ◽  
Kourosh Shahriar ◽  
Hossein Jalalifar ◽  
Kaveh Ahangari

Rocks are formed from particles and the interaction between those particles controls the behaviour of a rock’s mechanical properties. Since it is very important to conduct extensive studies about the relationship between the micro-parameters and macro-parameters of rock, this paper investigates the effects of some micro-parameters on strength properties and the behaviour of cracks in rock. This is carried out by using numerical simulation of an extensive series of Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. The micro-parameters included the particles’ contact modulus, the contact stiff ness ratio, bond cohesion, bond tensile strength, the friction coefficient and the friction angle, and the mechanical properties of chromite rock have been considered as base values of the investigation. Based on the obtained results, it was found that the most important micro-parameters on the behaviour of rock in the compressive state are bond cohesion, bond tensile strength, and the friction coefficient. Also, the bond tensile strength showed the largest effect under tensile conditions. The micro-parameter of bond tensile strength increased the rock tensile strength (up to 5 times), minimized destructive cracks and increased the corresponding strain (almost 2.5 times) during critical stress.


2016 ◽  
Vol 846 ◽  
pp. 348-353
Author(s):  
Somayeh Behraftar ◽  
Joshua Heslin ◽  
S. Galindo Torres ◽  
Alexander Scheuermann

In this study, a micro-mechanical model is developed to study the correlation of the point load index in rocks with uniaxial compressive strength (UCS) tests. The model is represented by an array of bonded particles simulated by a novel discrete based model, which was introduced by the authors previously. The point load test (PLT) is performed in the field on rock samples to classify and estimate the UCS of a rock type via the index-to-strength correlation factor k. Numerical analyses, such as the one presented in this work, will serve to close the knowledge gap concerning the correlation between k, UCS and other material properties of rocks.


2019 ◽  
Vol 252 ◽  
pp. 08007 ◽  
Author(s):  
Jacek Góra ◽  
Danuta Barnat-Hunek ◽  
Paweł Wlaź ◽  
Monika Garbacz

The article presents the results of testing physical and strength properties of concrete with the addition of lightweight perlite in the amount of 10 and 20%. The additive was introduced by volume substituting a part of the sand. In addition, the effect of using siloxane admixtures and a vinyl acetate copolymer with different degree of dosing, as well as applied simultaneously, were analysed. The tests were carried out in the field of bulk density and proper density, determination of tightness and porosity, compressive strength and tensile strength after 28 days of maturation. In terms of durability of concrete, absorption and resistance of concretes to the freeze-up effects after 100 freezing and thawing cycles were tested. The results of the study were subjected to statistical analysis using the analysis of variance. The analysed factors of influence were the amount of perlite addition, as well as the type and amount of the added admixture


2012 ◽  
Vol 468-471 ◽  
pp. 1771-1774 ◽  
Author(s):  
Yu Suo Wang ◽  
Zheng Qun Wu ◽  
Ming Nian Wang ◽  
Hao Chen

Rock strength is a key factor in the tunneling efficiency of TBM construction. An issue needing special attention on the work site is how to determine rapidly and accurately the strength of the surrounding rock which makes a crucial reference for the choice of TBM tunneling parameters and corresponding support measures. In the study conducted on the TBM construction site of Zhongtianshan Tunnel, point load test (PLT) of rocks is adopted to measure the rock strength and the data is compared with those of the uniaxial compressive strength (UCS). Finally, the correlation between the two is revealed through regression analysis method.


2011 ◽  
Vol 255-260 ◽  
pp. 4012-4016
Author(s):  
Jun Qing Ma ◽  
You Xi Wang

This paper studies relationship between soil-cement parameters and unconfined compressive strength. The research in tensile strength and deformation modulus of soil-cement is an important basis for soil-cement failure mechanism and intensity theory. They also impact cracks, deformation and durability of cement-soil structure. Shear strength and deformation of soil-cement is important to the destruction analysis and finite element calculations. Therefore it needs to study on tensile strength, shear strength and deformation modulus of soil-cement. Based on previous experiments, the relationship of tensile strength, shear strength, deformation modulus and unconfined compressive strength of soil-cement are quantitatively studied.


Sign in / Sign up

Export Citation Format

Share Document