scholarly journals Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression

Toxics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 48 ◽  
Author(s):  
Jin-Yong Lee ◽  
Maki Tokumoto ◽  
Gi-Wook Hwang ◽  
Min-Seok Kim ◽  
Tsutomu Takahashi ◽  
...  

Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.

1993 ◽  
Vol 121 (2) ◽  
pp. 387-395 ◽  
Author(s):  
O Ohara ◽  
Y Gahara ◽  
T Miyake ◽  
H Teraoka ◽  
T Kitamura

The existence of a neurofilament-deficient mutant of Japanese quail was recently documented (Yamasaki, H., C. Itakura, and M. Mizutani. 1991. Acta Neuropathol. 82:427-434), but the genetic events leading to the neurofilament deficiency have yet to be determined. Our molecular biological analyses revealed that the expression of neurofilament-L (NF-L) gene was specifically repressed in neurons of this mutant. To search for mutation(s) responsible for the shutdown of this gene expression, we cloned and sequenced the NF-L genes in the wild-type and mutant quails. It is eventually found that the NF-L gene in the mutant includes a nonsense mutation at the deduced amino acid residue 114, indicating that the mutant is incapable of producing even a trace amount of polymerization-competent NF-L protein at any situation. The identification of this nonsense mutation provides us with a solid basis on which molecular mechanisms underlying the alteration in the neuronal cytoskeletal architecture in the mutant should be interpreted.


2003 ◽  
Vol 71 (8) ◽  
pp. 4795-4803 ◽  
Author(s):  
Shuping Zhang ◽  
L. Garry Adams ◽  
Jairo Nunes ◽  
Sangeeta Khare ◽  
Renée M. Tsolis ◽  
...  

ABSTRACT Infection of bovine ligated loops with the Salmonella enterica serotype Typhimurium wild type but not a sipA sopABDE2 mutant resulted in fluid accumulation, polymorphonuclear cell infiltration, and expression of CXC chemokines, particularly GROα. None of these sipA sopABDE2-dependent responses was observed in murine-ligated loops. The majority of GROα transcripts localized to bovine intestinal epithelium. Thus, different disease outcomes between mice (i.e., no diarrhea) and calves (i.e., diarrhea) may be due to differences in sipA sopABDE2-dependent CXC chemokine gene expression in epithelial cells.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Cristiane Iozzi Silva ◽  
Paulo Cézar Novais ◽  
Andressa Romualdo Rodrigues ◽  
Camila A.M. Carvalho ◽  
Benedicto Oscar Colli ◽  
...  

ABSTRACT Alcohol consumption aggravates injuries caused by ischemia. Many molecular mechanisms are involved in the pathophysiology of cerebral ischemia, including neurotransmitter expression, which is regulated by microRNAs. Objective: To evaluate the microRNA-219 and NMDA expression in brain tissue and blood of animals subjected to cerebral ischemia associated with alcoholism. Methods: Fifty Wistar rats were divided into groups: control, sham, ischemic, alcoholic, and ischemic plus alcoholic. The expression of microRNA-219 and NMDA were analyzed by real-time PCR. Results: When compared to the control group, the microRNA-219 in brain tissue was less expressed in the ischemic, alcoholic, and ischemic plus alcoholic groups. In the blood, this microRNA had lower expression in alcoholic and ischemic plus alcoholic groups. In the brain tissue the NMDA gene expression was greater in the ischemic, alcoholic, and ischemic plus alcoholic groups. Conclusion: A possible modulation of NMDA by microRNA-219 was observed with an inverse correlation between them.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles Finsterwald ◽  
Sara Dias ◽  
Pierre J. Magistretti ◽  
Sylvain Lengacher

Gangliosides are major constituents of the plasma membrane and are known to promote a number of physiological actions in the brain, including synaptic plasticity and neuroprotection. In particular, the ganglioside GM1 was found to have a wide range of preclinical and clinical benefits in brain diseases such as spinal cord injury, Huntington’s disease and Parkinson’s disease. However, little is known about the underlying cellular and molecular mechanisms of GM1 in the brain. In the present study, we show that GM1 exerts its actions through the promotion of glycolysis in astrocytes, which leads to glucose uptake and lactate release by these cells. In astrocytes, GM1 stimulates the expression of several genes involved in the regulation of glucose metabolism. GM1 also enhances neuronal mitochondrial activity and triggers the expression of neuroprotection genes when neurons are cultured in the presence of astrocytes. Finally, GM1 leads to a neuroprotective effect in astrocyte-neuron co-culture. Together, these data identify a previously unrecognized mechanism mediated by astrocytes by which GM1 exerts its metabolic and neuroprotective effects.


2021 ◽  
Author(s):  
Rahat Hasan ◽  
Jack Humphrey ◽  
Conceicao Bettencourt ◽  
Tammaryn Lashley ◽  
Pietro Fratta ◽  
...  

Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared post-mortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.


2007 ◽  
Vol 36 (3) ◽  
pp. 221-227 ◽  
Author(s):  
FLORENT DAVID ◽  
JUDITH FARLEY ◽  
HONG HUANG ◽  
JEAN-PIERRE LAVOIE ◽  
SHEILA LAVERTY

Sign in / Sign up

Export Citation Format

Share Document