scholarly journals Potential of Matrix Metalloproteinase Inhibitors for the Treatment of Local Tissue Damage Induced by a Type P-I Snake Venom Metalloproteinase

Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 8 ◽  
Author(s):  
Lina María Preciado ◽  
Jaime Andrés Pereañez ◽  
Jeffrey Comer

Snake bite envenoming is a public health problem that was recently included in the list of neglected tropical diseases of the World Health Organization. In the search of new therapies for the treatment of local tissue damage induced by snake venom metalloproteinases (SVMPs), we tested the inhibitory activity of peptidomimetic compounds designed as inhibitors of matrix metalloproteinases on the activities of the SVMP Batx-I, from Bothrops atrox venom. The evaluated compounds show great potential for the inhibition of Batx-I proteolytic, hemorrhagic and edema-forming activities, especially the compound CP471474, a peptidomimetic including a hydroxamate zinc binding group. Molecular dynamics simulations suggest that binding of this compound to the enzyme is mediated by the electrostatic interaction between the hydroxamate group and the zinc cofactor, as well as contacts, mainly hydrophobic, between the side chain of the compound and amino acids located in the substrate binding subsites S1 and S1 ′ . These results show that CP471474 constitutes a promising compound for the development of co-adjuvants to neutralize local tissue damage induced by snake venom metalloproteinases.

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 451
Author(s):  
José María Gutiérrez ◽  
Laura-Oana Albulescu ◽  
Rachel H. Clare ◽  
Nicholas R. Casewell ◽  
Tarek Mohamed Abd Abd El-Aziz ◽  
...  

A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.


2019 ◽  
Vol 16 (4) ◽  
pp. 319-329 ◽  
Author(s):  
Subhamay Panda ◽  
Leena Kumari

Snake bite envenoming causes high rates of morbidity and mortality and is one of the serious health-related concerns all over the globe. Around 3200 species of snakes have been discovered till date. Amid these species, about 1300 species of snakes are venomous. On account of its severity, World Health Organization (WHO) recently included snakebite envenoming in the list of neglected tropical diseases. Immunotherapy has partially solved the issues related to snakebite envenomation. However, it is associated with numerous adverse effects, due to which alternative treatment strategies are required for the treatment of snakebite. Traditionally, a large repository of herbal medicinal plants is known to possess activity against snake venom. An exploration of the therapeutic benefits of these medicinal plants used for the treatment of snakebites reveals the presence of various potential phytochemicals. The aim of the present review is to provide an outline regarding poisonous snakes all over the world, various compositions of snake venom, adverse effects related to anti-snake venom and numerous medicinal plants used for the anti-ophidian activity.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Helena C. Maltezou

Visceral leishmaniasis remains a public health problem worldwide. This illness was included by the World Health Organization in the list of neglected tropical diseases targeted for elimination by 2015. The widespread emergence of resistance to pentavalent antimonials in India where half cases occur globally and the unavailability of a vaccine in clinical use constitute major obstacles in achieving this goal. The last decade new antileishmanials became available, including the oral agent miltefosine. However, in poor endemic countries their wide use was curtailed because of the high costs, and also due to concerns of toxicity and emergence of resistance. Various mechanisms of antileishmanial resistance were identified recently in field isolates. Their elucidation will boost the design of new drugs and the molecular surveillance of resistance. Combination regimens should be evaluated in large trials. Overall, the development of antileishmanials has been generally slow; new drugs are needed. In order to control visceral leishmaniasis worldwide, treatment advances should become affordable in the poorest countries, where they are needed most.


Author(s):  
Martin Walker ◽  
Jonathan I D Hamley ◽  
Philip Milton ◽  
Frédéric Monnot ◽  
Sally Kinrade ◽  
...  

Abstract Drug-based interventions are at the heart of global efforts to reach elimination as a public health problem (trachoma, soil-transmitted helminthiases, schistosomiasis, lymphatic filariasis) or elimination of transmission (onchocerciasis) for five of the most prevalent neglected tropical diseases tackled via the World Health Organization preventive chemotherapy strategy. While for some of these diseases there is optimism that currently available drugs will be sufficient to achieve the proposed elimination goals, for others—particularly onchocerciasis—there is a growing consensus that novel therapeutic options will be needed. Since in this area no high return of investment is possible, minimizing wasted money and resources is essential. Here, we use illustrative results to show how mathematical modelling can guide the drug development pathway, yielding resource-saving and efficiency payoffs, from the refinement of target product profiles and intended context of use, to the design of clinical trials.


2019 ◽  
Vol 3 ◽  
pp. 1517 ◽  
Author(s):  

Schistosomiasis remains one of the neglected tropical diseases (NTDs) impacting millions of people around the world. The World Health Organization (WHO) recently proposed a goal of elimination as a public health problem (EPHP) for schistosomiasis to be reached by 2030. Current WHO treatment guidelines for achieving EPHP focus on targeting school-aged children. The NTD Modelling Consortium has developed mathematical models to study schistosomiasis transmission dynamics and the impact of control measures. Our modelling insights on Schistosoma mansoni have shown that EPHP is likely to be attainable in low to moderate prevalence settings using the current guidelines. However, as prevalence rises within higher settings, EPHP is less likely to be achieved unless both school-aged children and adults are treated (with coverage levels increasing with the adult burden of infection). We highlight the challenges that are faced by treatment programmes, such as non-adherence to treatment and resurgence, which can hinder progress towards achieving and maintaining EPHP. Additionally, even though EPHP may be reached, prevalence can still be high due to persisting infections. Therefore, without elimination of transmission, treatment will likely have to continue to maintain EPHP. Further modelling work is being carried out, including extending our results to S. haematobium. By providing these modelling insights, we aim to inform discussions on the goals and treatment guidelines for schistosomiasis.


2018 ◽  
Author(s):  
Lucas Buyon ◽  
Randall Slaven ◽  
Paul M. Emerson ◽  
Jonathan King ◽  
Oscar Debrah ◽  
...  

AbstractTrachoma and Guinea Worm Disease (GWD) are neglected tropical diseases (NTDs) slated for elimination as a public health problem and eradication respectively by the World Health Organization. As these programs wind down, uncovering the last remaining cases becomes an urgent priority. In 2010, The Ghana Health Service, along with The Carter Center, Sightsavers, and other partners, conducted integrated case search for cases of both GWD and the last stage of trachoma disease, trachomatous trichiasis (TT), as well as providing treatment for trachoma to meet elimination and eradication targets. House to house case search for both diseases was conducted and two case management strategies were explored: a centralized referral to services method and a Point of Care (POC) delivery method. 835 suspected TT cases were discovered in the centralized method, of which 554 accepted surgery. 482 suspected TT cases were discovered in the POC method and all TT cases accepted surgery in the POC searches. The cost per TT case examined was lower in the POC searches compared to the centralized searches ($19.97 in the POC searches and $20.85 in the centralized searches). Both strategies resulted in high surgical uptake for TT surgery, with average uptakes of 72.4% and 83.9% for the centralized and POC searches respectively. We present here that house to house case search offering services at POC are feasible and a potential tool for elimination and eradication programs nearing their end.Author SummaryTrachoma and Guinea Worm Disease (GWD) are neglected tropical diseases (NTDs) slated for elimination as a public health problem and eradication respectively by the World Health Organization. As these programs wind down, uncovering the last remaining cases becomes an urgent priority in order to confirm that eradiation/elimination targets have been reached. Active case searches are one method of finding these last vestiges of disease. Searches for that look for multiple diseases are referred to as integrated searches. We piloted here integrated case searches for GWD and Trachoma with two case management strategies, a referral approach to a central location, and point of care approach (POC). POC approaches can difficult to implement in low resource settings because they require extensive personnel, financial, and logistical, support. However, POC approaches remove one of the biggest barriers to treatment, time spent traveling to a health center, and thus can improve treatment uptake. We found here that integrated active cases searches with a POC case management approach can be implemented in a low resource setting; and improve acceptance and uptake of trachoma examination and trichiasis surgery respectively without costing much more than the referral case management approach.


2019 ◽  
Vol 3 ◽  
pp. 1538 ◽  
Author(s):  

The Global Programme to Eliminate Lymphatic Filariasis was launched in 2000 to eliminate lymphatic filariasis (LF) as a public health problem by 1) interrupting transmission through mass drug administration (MDA) and 2) offering basic care to those suffering from lymphoedema or hydrocele due to the infection. Although impressive progress has been made, the initial target year of 2020 will not be met everywhere. The World Health Organization recently proposed 2030 as the new target year for elimination of lymphatic filariasis (LF) as a public health problem. In this letter, LF modelers of the Neglected Tropical Diseases (NTDs) Modelling Consortium reflect on the proposed targets for 2030 from a quantitative perspective. While elimination as a public health problem seems technically and operationally feasible, it is uncertain whether this will eventually also lead to complete elimination of transmission. The risk of resurgence needs to be mitigated by strong surveillance after stopping interventions and sometimes perhaps additional interventions.


2019 ◽  
Vol 3 ◽  
pp. 1517
Author(s):  

Schistosomiasis remains one of the neglected tropical diseases (NTDs) impacting millions of people around the world. The World Health Organization (WHO) recently proposed a goal of elimination as a public health problem (EPHP) for schistosomiasis to be reached by 2030. Current WHO treatment guidelines for achieving EPHP focus on targeting school-aged children. The NTD Modelling Consortium has developed mathematical models to study schistosomiasis transmission dynamics and the impact of control measures. Our modelling insights on Schistosoma mansoni have shown that EPHP is likely to be attainable in low to moderate prevalence settings using the current guidelines. However, as prevalence rises within high prevalence settings, EPHP is less likely to be achieved unless both school-aged children and adults are treated (with coverage levels increasing with the adult burden of infection). We highlight the challenges that are faced by treatment programmes, such as non-adherence to treatment and resurgence, which can hinder progress towards achieving and maintaining EPHP. Additionally, even though EPHP may be reached, prevalence can still be high due to persisting infections. Therefore, without interruption of transmission, treatment will likely have to continue to maintain EPHP. Further modelling work is being carried out, including extending our results to S. haematobium. By providing these modelling insights, we aim to inform discussions on the goals and treatment guidelines for schistosomiasis.


2020 ◽  
Vol 27 ◽  
Author(s):  
Kush K. Maheshwari ◽  
Debasish Bandyopadhyay

Background: Neglected tropical diseases (NTDs) affect a huge population of the world and majority of the victims belong to the poor community of the developing countries. Until now, the World Health Organization (WHO) has identified 20 tropical diseases as NTDs that must be addressed with high priority. However, many heterocyclic scaffolds have demonstrated potent therapeutic activity against several NTDs. Objective: There are three major objectives: (1) To discuss the causes, symptoms, and current status of all the 20 NTDs; (2) To explore the available heterocyclic drugs, and their mechanism of actions (if known) that are being used to treat NTDs; (3) To develop general awareness on NTDs among the medicinal/health research community and beyond. Methods: The 20 NTDs have been discussed according to their alphabetic orders along with the possible heterocyclic remedies. Current status of treatment with an emphasis on the heterocyclic drugs (commercially available and investigational) has been outlined. In addition, brief discussion of the impacts of NTDs on socio-economic condition is included. Results: NTDs are often difficult to diagnose and the problem is worsened by the unhealthy hygiene, improper awareness, and inadequate healthcare in the developing countries where these diseases primarily affect poor people. The statistics include duration of suffering, numbers affected, and access to healthcare and medication. The mechanism of actions of various heterocyclic drugs, if reported, have been briefly summarized. Conclusion: Scientists and pharmaceutical corporations should allocate more resources to reveal the in-depth mechanism of actions of many heterocyclic drugs that are currently being used for the treatment of NTDs. Analysis of current heterocyclic compounds and development of new medications can help in the fight to reduce/remove the devastating effects of NTDs. An opinion-based concise review has been presented. Based on available literature, this is the first effect to present all the 20 NTDs and related heterocyclic compounds under the same umbrella.


2020 ◽  
Vol 14 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Matthew P. Ameh ◽  
Mamman Mohammed ◽  
Yusuf P. Ofemile ◽  
Magaji G. Mohammed ◽  
Ada Gabriel ◽  
...  

Background: The World Health Organization included snakebite envenomation among Neglected Tropical Diseases in 2017. The importance of natural products from plants is enormous, given that most prescribed drugs originate from plants. Among this is Mucuna pruriens and Mimosa pudica, with many registered patents asserting their health benefits. Objective: This study investigated the in vitro neutralizing effects of Mucuna pruriens seed and Mimosa pudica root extracts on venoms of Naja nigricollis and Bitis arietans. Methods: In mice, the LD50 and phytochemical analysis of M. pruriens and M. pudica plant extracts were carried out prior to the evaluation of their haemolytic and fibrinolytic effect. Their effects on the activities of phospholipase A2 (PLA2) were also assessed. Results: At a concentration of 50 mg/ml, both plant extracts were found to neutralize the fibrinolytic activity of N. nigricollis, but 400 mg/ml was required to neutralize the fibrinolytic activity of B. arietans. In haemolytic studies, 50 mg/ml concentration of M. pruriens extract suppressed haemolysis caused by N. nigricollis venom by 70% but at the same concentration, M. pudica extract reduced haemolysis by 49.4%. M. pruriens, at 50 mg/ml concentration, only inhibited phospholipase A2 activity by 7.7% but higher concentrations up to 400mg/ml had no effect against the venom of N. nigricollis; at 200 mg/ml. M. pudica extract inhibited PLA2 activity by 23%. Conclusion: The results suggest that M. pruriens and M. pudica may be considered as promising antivenom agents for people living in a snake-bite prone environment.


Sign in / Sign up

Export Citation Format

Share Document