scholarly journals Saporin from Saponaria officinalis as a Tool for Experimental Research, Modeling, and Therapy in Neuroscience

Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 546
Author(s):  
Alexey P. Bolshakov ◽  
Mikhail Yu. Stepanichev ◽  
Yulia V. Dobryakova ◽  
Yulia S. Spivak ◽  
Vladimir A. Markevich

Saporin, which is extracted from Saponaria officinalis, is a protein toxin that inactivates ribosomes. Saporin itself is non-selective toxin but acquires high specificity after conjugation with different ligands such as signaling peptides or antibodies to some surface proteins expressed in a chosen cell subpopulation. The saporin-based conjugated toxins were widely adopted in neuroscience as a convenient tool to induce highly selective degeneration of desired cell subpopulation. Induction of selective cell death is one of approaches used to model neurodegenerative diseases, study functions of certain cell subpopulations in the brain, and therapy. Here, we review studies where saporin-based conjugates were used to analyze cell mechanisms of sleep, general anesthesia, epilepsy, pain, and development of Parkinson’s and Alzheimer’s diseases. Limitations and future perspectives of use of saporin-based toxins in neuroscience are discussed.

Author(s):  
L. M. Sosedova ◽  
V. S. Rukavishnikov ◽  
E. A. Titov

The results of a study on rats toxicity of nanoparticles of metals bismuth, gadolinium and silver encapsulated in a natural biopolymer matrix arabinogalactan are presented. When intake of nanocomposite of silver revealed the readiness of the brain cell to apoptosis. The effect of bismuth and gadolinium nanocomposites did not cause an increase in the process of programmed cell death.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1292 ◽  
Author(s):  
Shirin Hafezi ◽  
Mohamed Rahmani

The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins (BIM, BAD, NOXA, PUMA, BID, BIK, HRK). Notably, the BCL-2 antiapoptotic proteins are often overexpressed in malignant cells. While this offers survival advantages to malignant cells and strengthens their drug resistance capacity, it also offers opportunities for novel targeted therapies that selectively kill such cells. This review provides a comprehensive overview of the extensive preclinical and clinical studies targeting BCL-2 proteins with various BCL-2 proteins inhibitors with emphasis on venetoclax as a single agent, as well as in combination with other therapeutic agents. This review also discusses recent advances, challenges focusing on drug resistance, and future perspectives for effective targeting the Bcl-2 family of proteins in cancer.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rahul Basu ◽  
Vinod Nair ◽  
Clayton W. Winkler ◽  
Tyson A. Woods ◽  
Iain D. C. Fraser ◽  
...  

Abstract Background A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6–8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. Methods To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. Results BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. Conclusions These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Author(s):  
Diane Moujalled ◽  
Andreas Strasser ◽  
Jeffrey R. Liddell

AbstractTightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jun Lin ◽  
Binbin Ding ◽  
Pan Zheng ◽  
Dong Li ◽  
Meifang Wang ◽  
...  

Cancer vaccine is to make tumor-specific antigens into vaccines, which then are injected back into the body to activate immune responses for cancer immunotherapy. Despite the high specificity and therapeutic...


Blood ◽  
2013 ◽  
Vol 121 (5) ◽  
pp. 734-744 ◽  
Author(s):  
Paul Greaves ◽  
John G. Gribben

AbstractThe B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.


2013 ◽  
Vol 6 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Teresa Giraldez ◽  
Jaime Dominguez ◽  
Diego Alvarez de la Rosa

1969 ◽  
Vol 40 (1) ◽  
pp. 124-133
Author(s):  
Lina Vanessa Becerra ◽  
Hernán José Pimienta

Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability) what is relevant for the apoptotic process in a sector of the brain may not be important in another.


Blood ◽  
1974 ◽  
Vol 44 (6) ◽  
pp. 849-855 ◽  
Author(s):  
A. C. MacCuish ◽  
S. J. Urbaniak ◽  
A. H. Goldstone ◽  
W. J. Irvine

Abstract Lymphocyte transformation responses to the mitogen phytohemagglutinin (PHA) were measured in 20 patients with proven pernicious anemia (PA) and 20 matched controls using 3H-thymidine label. The patients with PA showed significant depression of lymphocyte transformation to the three doses of PHA employed, as judged by beta counting; however, radioautographic examination of PHA-stimulated cells indicated that the results were due to a failure of intranuclear incorporation of 3H-thymidine by PA lymphocytes, rather than a failure of PHA to induce blastogenesis. The percentages and numbers of T and B lymphocytes in peripheral blood were measured in 30 patients and controls by rosette and immunofluorescence techniques, respectively. There was no significant difference in the B cell subpopulations between patients and controls; the T cell subpopulation was slightly lower in the PA patients (mean 62.4%) than in the controls (mean 65.5%), but the difference was not statistically significant. The depressed uptake of 3H-thymidine by stimulated lymphocytes in PA would seem to reflect a chemical defect rather than inherent immunologic abnormality.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1702
Author(s):  
Sereen Sandouka ◽  
Tawfeeq Shekh-Ahmad

Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.


Sign in / Sign up

Export Citation Format

Share Document