scholarly journals Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities

Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 658
Author(s):  
Shusei Hamamichi ◽  
Takeshi Fukuhara ◽  
Nobutaka Hattori

Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.

Bioanalysis ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1135-1144
Author(s):  
Chang Liu ◽  
Yeon Su Kim ◽  
John Hok-Nin Lowe ◽  
Shan Chung

Aim: Evaluation of suitable pharmacokinetic properties is critical for successful development of IgG-based biotherapeutics. The prolonged half-lives of IgGs depend on the intracellular trafficking function of neonatal Fc receptor, which rescues internalized IgGs from lysosomal degradation and recycles them back to circulation. Results: Here, we developed a novel cell-based assay to quantify recycling of monoclonal antibodies in a transwell culture system that uses a cell line that stably expresses human neonatal Fc receptor. We tested seven therapeutic antibodies and showed that the recycling output of the assay strongly correlated with the clearance in humans. Conclusion: This recycling assay has potential application as a pharmacokinetic prescreening tool to facilitate development and selection of IgG-based candidate therapeutic monoclonal antibodies.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15 ◽  
Author(s):  
Francesca Bonello ◽  
Roberto Mina ◽  
Mario Boccadoro ◽  
Francesca Gay

Immunotherapy is the latest innovation for the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) entered the clinical practice and are under evaluation in clinical trials. MAbs can target highly selective and specific antigens on the cell surface of MM cells causing cell death (CD38 and CS1), convey specific cytotoxic drugs (antibody-drug conjugates), remove the breaks of the immune system (programmed death 1 (PD-1) and PD-ligand 1/2 (L1/L2) axis), or boost it against myeloma cells (bi-specific mAbs and T cell engagers). Two mAbs have been approved for the treatment of MM: the anti-CD38 daratumumab for newly-diagnosed and relapsed/refractory patients and the anti-CS1 elotuzumab in the relapse setting. These compounds are under investigation in clinical trials to explore their synergy with other anti-MM regimens, both in the front-line and relapse settings. Other antibodies targeting various antigens are under evaluation. B cell maturation antigens (BCMAs), selectively expressed on plasma cells, emerged as a promising target and several compounds targeting it have been developed. Encouraging results have been reported with antibody drug conjugates (e.g., GSK2857916) and bispecific T cell engagers (BiTEs®), including AMG420, which re-directs T cell-mediated cytotoxicity against MM cells. Here, we present an overview on mAbs currently approved for the treatment of MM and promising compounds under investigation.


Blood ◽  
2013 ◽  
Vol 121 (14) ◽  
pp. 2804-2813 ◽  
Author(s):  
Mai Yoshikawa ◽  
Yohei Mukai ◽  
Yoshiaki Okada ◽  
Yuki Tsumori ◽  
Shin-ichi Tsunoda ◽  
...  

Key Points First therapeutic application that targets Robo4 on the tumor blood vasculature High-throughput screening system to isolate cell-internalizing monoclonal antibodies useful to develop effective antibody-drug conjugates


2015 ◽  
Vol 20 (4) ◽  
pp. 468-483 ◽  
Author(s):  
Vladimir I. Razinkov ◽  
Michael J. Treuheit ◽  
Gerald W. Becker

More therapeutic monoclonal antibodies and antibody-based modalities are in development today than ever before, and a faster and more accurate drug discovery process will ensure that the number of candidates coming to the biopharmaceutical pipeline will increase in the future. The process of drug product development and, specifically, formulation development is a critical bottleneck on the way from candidate selection to fully commercialized medicines. This article reviews the latest advances in methods of formulation screening, which allow not only the high-throughput selection of the most suitable formulation but also the prediction of stability properties under manufacturing and long-term storage conditions. We describe how the combination of automation technologies and high-throughput assays creates the opportunity to streamline the formulation development process starting from early preformulation screening through to commercial formulation development. The application of quality by design (QbD) concepts and modern statistical tools are also shown here to be very effective in accelerated formulation development of both typical antibodies and complex modalities derived from them.


Author(s):  
YuE Kravchenko ◽  
SV Ivanov ◽  
DS Kravchenko ◽  
EI Frolova ◽  
SP Chumakov

Selection of antibodies using phage display involves the preliminary cloning of the repertoire of sequences encoding antigen-binding domains into phagemid, which is considered the bottleneck of the method, limiting the resulting diversity of libraries and leading to the loss of poorly represented variants before the start of the selection procedure. Selection in cell-free conditions using a ribosomal display is devoid from this drawback, however is highly sensitive to PCR artifacts and the RNase contamination. The aim of the study was to test the efficiency of a combination of both methods, including pre-selection in a cell-free system to enrich the source library, followed by cloning and final selection using phage display. This approach may eliminate the shortcomings of each method and increase the efficiency of selection. For selection, alpaca VHH antibody sequences suitable for building an immune library were used due to the lack of VL domains. Analysis of immune libraries from the genes of the VH3, VHH3 and VH4 families showed that the VHH antibodies share in the VH3 and VH4 gene groups is insignificant, and selection from the combined library is less effective than from the VHH3 family of sequences. We found that the combination of ribosomal and phage displays leads to a higher enrichment of high-affinity fragments and avoids the loss of the original diversity during cloning. The combined method allowed us to obtain a greater number of different high-affinity sequences, and all the tested VHH fragments were able to specifically recognize the target, including the total protein extracts of cell cultures.


Sign in / Sign up

Export Citation Format

Share Document