scholarly journals Characteristic Distribution of Ciguatoxins in the Edible Parts of a Grouper, Variola louti

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 218
Author(s):  
Naomasa Oshiro ◽  
Hiroya Nagasawa ◽  
Kyoko Kuniyoshi ◽  
Naoki Kobayashi ◽  
Yoshiko Sugita-Konishi ◽  
...  

Ciguatera fish poisoning (CFP) is one of the most frequently encountered seafood poisoning syndromes; it is caused by the consumption of marine finfish contaminated with ciguatoxins (CTXs). The majority of CFP cases result from eating fish flesh, but a traditional belief exists among people that the head and viscera are more toxic and should be avoided. Unlike the viscera, scientific data to support the legendary high toxicity of the head is scarce. We prepared tissue samples from the fillet, head, and eyes taken from five yellow-edged lyretail (Variola louti) individuals sourced from Okinawa, Japan, and analyzed the CTXs by LC-MS/MS. Three CTXs, namely, CTX1B, 52-epi-54-deoxyCTX1B, and 54-deoxyCTX1B, were confirmed in similar proportions. The toxins were distributed nearly evenly in the flesh, prepared separately from the fillet and head. Within the same individual specimen, the flesh in the fillet and the flesh from the head, tested separately, had the same level and composition of toxins. We, therefore, conclude that flesh samples for LC-MS/MS analysis can be taken from any part of the body. However, the tissue surrounding the eyeball displayed CTX levels two to four times higher than those of the flesh. The present study is the first to provide scientific data demonstrating the high toxicity of the eyes.

Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 692
Author(s):  
Panagiota Katikou

Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk analysis in the public health sector, including food safety authorities, often relies on digital technologies and open data sources. Global food safety challenges include marine biotoxins (MBs), being contaminants whose mitigation largely depends on risk analysis. Ciguatera Fish Poisoning (CFP), in particular, is a MB-related seafood intoxication attributed to the consumption of fish species that are prone to accumulate ciguatoxins. Historically, CFP occurred endemically in tropical/subtropical areas, but has gradually emerged in temperate regions, including European waters, necessitating official policy adoption to manage the potential risks. Researchers and policy-makers highlight scientific data inadequacy, under-reporting of outbreaks and information source fragmentation as major obstacles in developing CFP mitigation strategies. Although digital technologies and open data sources provide exploitable scientific information for MB risk analysis, their utilization in counteracting CFP-related hazards has not been addressed to date. This work thus attempts to answer the question, “What is the current extent of digital technologies’ and open data sources’ utilization within risk analysis tasks in the MBs field, particularly on CFP?”, by conducting a systematic literature review of the available scientific and grey literature. Results indicate that the use of digital technologies and open data sources in CFP is not negligible. However, certain gaps are identified regarding discrepancies in terminology, source fragmentation and a redundancy and downplay of social media utilization, in turn constituting a future research agenda for this under-researched topic.


Author(s):  
Tibor Pasinszki ◽  
Jimaima Lako ◽  
Todd Dennis

Ciguatoxins are very potent marine neurotoxins, that accumulate to toxic levels in edible fish in certain circumtropical areas, and are associated with ciguatera fish poisoning worldwide. Ciguatoxins are produced by specific benthic dinoflagellate species, enter the marine food chain via herbivorous fish and invertebrates, and eventually biotransformed in herbivorous, omnivorous, and carnivorous fishes to more poisonous forms. Ciguatoxins cause risks to human health at very low concentrations. To decrease the risk of ciguatera fish poisoning, it is important to know fishing areas with low risk of ciguatoxins, as well as to test fish tissue for toxins before consumption. Modern laboratories are using several detection techniques, such as mouse bioassay, cell-based assays, receptor-binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques, to obtain information about the total toxicity of fish tissue samples, as well as to identify toxins and to determine the toxin profile. State-of-the-art ciguatoxin detection involves the combination of a cell-based assay or receptor-binding assay to screen the total toxicity and liquid chromatography coupled with mass spectrometry to confirm toxins and provide toxin profiles. 


1997 ◽  
Vol 162 (5) ◽  
pp. 319-322 ◽  
Author(s):  
Annette Beadle

2001 ◽  
Vol 20 (2) ◽  
pp. 141-160 ◽  
Author(s):  
N. A. Palafox ◽  
L. E. Buenconsejo-Lum

2001 ◽  
Vol 20 (2) ◽  
pp. 85-139 ◽  
Author(s):  
Y. Hokama ◽  
J. S. M. Yoshikawa-Ebesu

Author(s):  
P. Geetha ◽  
B. Lakshman Kumar ◽  
U. Indra ◽  
B. Pavithra Sheetal

Objective: Ulcerative colitis known as inflammatory bowel disease (IBD) of unknown etiology. We examined the antioxidant and myeloperoxidase status in a murine model of 7,12-dimethylbenz[a]anthracene induced colitis to elucidate the exact mechanism behind the inflammation.Methods: Male Wistar rats were exposed to ulcerative colitis using various concentration of DMBA (7,12-Dimethylbenz[A]anthracene) were periodically analysed on 4th, 8th, 12th, 24th and 32nd week from the date of induction. To determine the disease activity index changes in body weight, food consumption, the presence of gross blood in stool and consistency of feces and diarrhea were observed. Macroscopic characters were elucidated based on clinical features of the colon and rectum using scoring pattern. Tissue inflammation status was noted through myeloperoxidase (MPO) assay. The antioxidant status in tissue samples was analysed by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total reduced glutathione (GSH).Results: Gavage intubation of DMBA induced colitis showed significant changes from 4th week and severity on 32nd week. The body weight was gradually reduced. Macroscopic scoring showed severe scoring pattern the inflammation was significantly heavier by week 4; and by the end of 32 w, inflammation in rats was double that of the controls, tissue myeloperoxidase (MPO) activity showed the steady increase of neutrophil infiltration and inflammation rate every week. A significant change was noted in tissue antioxidant status and it showed the oxidation level. Statistically, significant change was recorded from 4th week till 32nd week.Conclusion: The conventional biochemical changes in colitis induced animal model revealed the association between the oxidative stress and ulcerative colitis.


2020 ◽  
Vol 720 ◽  
pp. 107-120
Author(s):  
Thomas Wesener

A new genus, Dichromatobolus gen. nov., belonging to the genus-rich mainly southern hemisphere family Pachybolidae of the order Spirobolida, is described based on D. elephantulus gen. et sp. nov., illustrated with color pictures, line drawings, and scanning electron micrographs. The species is recorded from the spiny bush of southwestern Madagascar. Dichromatobolus elephantulus gen. et sp. nov. shows an unusual color pattern, sexual dichromatism with males being red with black legs and females being grey. Males seem to be more surface active, as mainly males were collected with pitfall traps. Females mainly come from the pet trade. The body of this species is short and very wide, being only 8 times longer than wide in the males. Live observations show the species is a very slow mover, digging in loose soil almost as fast as walking on the surface. The posterior gonopods of Dichromatobolus gen. nov. are unusually simple and well-rounded, displaying some similarities to the genera Corallobolus Wesener, 2009 and Granitobolus Wesener, 2009, from which the new genus differs in numerous other characters, e.g., size, anterior gonopods and habitus. Despite several attempts with fresh tissue samples and different primers, molecular barcoding did not work for Dichromatobolus gen. nov. Any relationships to the other 15 genera of Pachybolidae indigenous to Madagascar remain unknown.


Sign in / Sign up

Export Citation Format

Share Document