scholarly journals Folding Control in the Path of Type 5 Secretion

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 341
Author(s):  
Nathalie Dautin

The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 339
Author(s):  
Denise Dekker ◽  
Frederik Pankok ◽  
Thorsten Thye ◽  
Stefan Taudien ◽  
Kwabena Oppong ◽  
...  

Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiellapneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with blaCTX-M-15 genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana.


Author(s):  
Silindile Maphosa ◽  
Lucy Moleleki ◽  
Thabiso Motaung

The type 6 protein secretion system (T6SS) is prevalently utilized by Gram-negative bacteria to compete for resources and space. Upon activation, toxic effectors from this secretion system are translocated into the competitor prokaryote or eukaryote in a contact-dependent manner. While much has been reported on T6SS-mediated prokaryotic competition, very little is understood about the mechanisms of bacterial interactions with eukaryotic hosts. Likewise, many virulent T6SS effectors are known to be antibacterial. In recent years, however, evidence has emerged on numerous T6SS effectors that interact with related immunity proteins in a range of eukaryotic hosts. Insights into how this effector-immunity pairing alters the physiological responses of the recipient organism might provide opportunities relating to the T6SS agricultural and biotherapeutic applications. We, therefore, summarize the impacts of the T6SS effectors with a special focus on bacterial interactions with animals, plants, and fungi. We further briefly discuss pipelines that are currently used to characterize antieukaryotic T6SS effectors.


Author(s):  
Silindile Maphosa ◽  
Thabiso Motaung ◽  
Lucy Moleleki

The type 6 protein secretion system (T6SS) is prevalently utilized by Gram-negative bacteria to compete for resources and space. Upon activation, toxic effectors from this secretion system are translocated into the competitor prokaryote or eukaryote in a contact-dependent manner. While much has been reported on T6SS-mediated prokaryotic competition, very little is understood about the mechanisms of bacterial interactions with eukaryotic hosts. Likewise, many virulent T6SS effectors are known to be antibacterial. In recent years, however, evidence has emerged on numerous T6SS effectors that interact with related immunity proteins in a range of eukaryotic hosts. Insights into how this effector-immunity pairing alters the physiological responses of the recipient organism might provide opportunities relating to the T6SS agricultural and biotherapeutic applications. We, therefore, summarize the impacts of the T6SS effectors with a special focus on bacterial interactions with animals, plants, and fungi. We further briefly discuss pipelines that are currently used to characterize antieukaryotic T6SS effectors.


2018 ◽  
Author(s):  
Andi Dhroso ◽  
Samantha Eidson ◽  
Dmitry Korkin

AbstractGram-negative bacteria are responsible for hundreds of millions infections worldwide, including the emerging hospital-acquired infections and neglected tropical diseases in the third-world countries. Finding a fast and cheap way to understand the molecular mechanisms behind the bacterial infections is critical for efficient diagnostics and treatment. An important step towards understanding these mechanisms is discovering bacterial effectors, the proteins secreted into the host through one of the six common secretion system types. Unfortunately, current effector prediction methods are designed to specifically target one of three secretion systems, and no accurate “secretion system-agnostic” method is available.Here, we present PREFFECTOR, a computational feature-based approach to discover effectors in Gram-negative bacteria without prior knowledge on bacterial secretion system(s) or cryptic secretion signals. Our approach was first evaluated using several assessment protocols on a manually curated, balanced dataset of experimentally determined effectors across all six secretion systems as well as non-effector proteins. The evaluation revealed high accuracy of the top performing classifiers in PREFFECTOR, with the small false positive discovery rate across all six secretion systems. Our method was also applied to four bacteria that had limited knowledge on virulence factors or secreted effectors. PREFFECTOR web-server is freely available at: http://korkinlab.org/preffector.


mBio ◽  
2021 ◽  
Author(s):  
Chih-Feng Wu ◽  
Alexandra J. Weisberg ◽  
Edward W. Davis ◽  
Lin Chou ◽  
Surtaz Khan ◽  
...  

The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside.


2020 ◽  
Author(s):  
Hanh N. Lam ◽  
Tannia Lau ◽  
Adam Lentz ◽  
Jessica Sherry ◽  
Alejandro Cabrera-Cortez ◽  
...  

ABSTRACTAntibiotic resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from non-pathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs, but do not inhibit bacterial growth. Here we describe identification of an isomer, 4EpDN, that is two-fold more potent (IC50 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated Twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injestisome T3SS. 4EpDN reduced the number of T3SS basal bodies detected on the surface of Y. enterocolitica, as visualized using a fluorescent derivative of YscD, an inner membrane ring with low homology to flagellar protein FliG. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.IMPORTANCETraditional antibiotics target both pathogenic and commensal bacteria, resulting in a disruption of the microbiota, which in turn is tied to a number of acute and chronic diseases. The bacterial type III secretion system (T3SS) is an appendage used by many bacterial pathogens to establish infection, but is largely absent from commensal members of the microbiota. In this study, we identify a new derivative of the cyclic peptomer class of T3SS inhibitors. These compounds inhibit the T3SS of the nosocomial ESKAPE pathogen Pseudomonas aeruginosa and enteropathogenic Yersinia and Salmonella. The impact of cyclic peptomers is specific to the T3SS, as other bacterial secretory systems are unaffected. Importantly, cyclic peptomers completely block replication of Chlamydia trachomatis, the causative agent of genital, eye, and lung infections, in human cells, a process that requires the T3SS. Therefore, cyclic peptomers represent promising virulence blockers that can specifically disarm a broad spectrum of Gram-negative pathogens.


2020 ◽  
Vol 49 (D1) ◽  
pp. D651-D659
Author(s):  
Jiawei Wang ◽  
Jiahui Li ◽  
Yi Hou ◽  
Wei Dai ◽  
Ruopeng Xie ◽  
...  

Abstract Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I–IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.


Cell Reports ◽  
2012 ◽  
Vol 1 (6) ◽  
pp. 656-664 ◽  
Author(s):  
Seemay Chou ◽  
Nhat Khai Bui ◽  
Alistair B. Russell ◽  
Katrina W. Lexa ◽  
Taylor E. Gardiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document