scholarly journals The String Theory Landscape

Universe ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. 176 ◽  
Author(s):  
Michael R. Douglas

String/M theory is formulated in 10 and 11 space-time dimensions; in order to describe our universe, we must postulate that six or seven of the spatial dimensions form a small compact manifold. In 1985, Candelas et al. showed that by taking the extra dimensions to be a Calabi–Yau manifold, one could obtain the grand unified theories which had previously been postulated as extensions of the Standard Model of particle physics. Over the years since, many more such compactifications were found. In the early 2000s, progress in nonperturbative string theory enabled computing the approximate effective potential for many compactifications, and it was found that they have metastable local minima with small cosmological constant. Thus, string/M theory appears to have many vacuum configurations which could describe our universe. By combining results on these vacua with a measure factor derived using the theory of eternal inflation, one gets a theoretical framework which realizes earlier ideas about the multiverse, including the anthropic solution to the cosmological constant problem. We review these arguments and some of the criticisms, with their implications for the prediction of low energy supersymmetry and hidden matter sectors, as well as recent work on a variation on eternal inflation theory motivated by computational complexity considerations.

2021 ◽  
Vol 61 ◽  
pp. 1-16
Author(s):  
Daniele Corradetti ◽  

Recent papers contributed revitalizing the study of the exceptional Jordan algebra $\mathfrak{h}_{3}(\mathbb{O})$ in its relations with the true Standard Model gauge group $\mathrm{G}_{SM}$. The absence of complex representations of $\mathrm{F}_{4}$ does not allow $\Aut\left(\mathfrak{h}_{3}(\mathbb{O})\right)$ to be a candidate for any Grand Unified Theories, but the automorphisms of the complexification of this algebra, i.e., $\mathfrak{h}_{3}^{\mathbb{C}}(\mathbb{O})$, are isomorphic to the compact form of $\mathrm{E}_{6}$ and similar constructions lead to the gauge group of the minimal left-right symmetric extension of the Standard Model.


Author(s):  
Daniele Corradetti

Abstract Recent papers of Todorov and Dubois-Violette[4] and Krasnov[7] contributed revitalizing the study of the exceptional Jordan algebra h3(O) in its relations with the true Standard Model gauge group GSM. The absence of complex representations of F4 does not allow Aut (h3 (O)) to be a candidate for any Grand Unified Theories, but the group of automorphisms of the complexification of this algebra isisomorphic to the compact form of E6. Following Boyle in [12], it is then easy to show that the gauge group of the minimal left-right symmetric extension of the Standard Model is isomorphic to a proper subgroup of Aut(C⊗h3(O))


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


1990 ◽  
Vol 05 (22) ◽  
pp. 4225-4240 ◽  
Author(s):  
J. SOLÀ

We speculate on a version of the "standard" model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the cosmological constant problem is also addressed in this framework.


2008 ◽  
Vol 23 (24) ◽  
pp. 4023-4037 ◽  
Author(s):  
VICENTE VENTO

Dirac showed that the existence of one magnetic pole in the universe could offer an explanation of the discrete nature of the electric charge. Magnetic poles appear naturally in most grand unified theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. I propose a universe with magnetic poles which are not observed free because they hide in deeply bound monopole–antimonopole states named monopolium. I discuss the realization of this proposal and its consistency with known cosmological features. I furthermore analyze its implications and the experimental signatures that confirm the scenario.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944005
Author(s):  
Samir D. Mathur

The vacuum must contain virtual fluctuations of black hole microstates for each mass [Formula: see text]. We observe that the expected suppression for [Formula: see text] is counteracted by the large number [Formula: see text] of such states. From string theory, we learn that these microstates are extended objects that are resistant to compression. We argue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remarkably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox, (b) spacetime acquires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale [Formula: see text].


2004 ◽  
Vol 19 (13n16) ◽  
pp. 1195-1201
Author(s):  
XIAO-GANG HE

Casimir vacuum energy is divergent. It needs to be regularized. The regularization introduces a renormalization scale which may lead to a scale dependent cosmological constant. We show that the requirement of physical cosmological constant is renormalization scale independent provides important constraints on possible particle contents and their masses in particle physics models. In the Standard Model of strong and electroweak interactions, besides the Casimir vacuum energy there is also vacuum energy induced from spontaneous symmetry breaking. The requirement that the total vacuum energy to be scale independent dictates the Higgs mass to be [Formula: see text] where the summation is over fermions and Ni equals to 3 and 1 for quarks and leptons, respectively. The Higgs mass is predicted to be approximately 382 GeV.


2016 ◽  
Vol 13 (06) ◽  
pp. 1650068 ◽  
Author(s):  
Luca Fabbri

We consider the simplest extension of the standard model, where torsion couples to spinor as well as the scalar fields, and in which the cosmological constant problem is solved.


2015 ◽  
Vol 30 (10) ◽  
pp. 1530008 ◽  
Author(s):  
Hans Peter Nilles ◽  
Patrick K. S. Vaudrevange

String theoretical ideas might be relevant for particle physics model building. Ideally one would hope to find a unified theory of all fundamental interactions. There are only a few consistent string theories in D = 10 or 11 spacetime dimensions, but a huge landscape in D = 4. We have to explore this landscape to identify models that describe the known phenomena of particle physics. Properties of compactified six spatial dimensions are crucial in that respect. We postulate some useful rules to investigate this landscape and construct realistic models. We identify common properties of the successful models and formulate lessons for further model building.


Sign in / Sign up

Export Citation Format

Share Document