scholarly journals Multi-Wavelength Properties of the 2021 Periastron Passage of PSR B1259-63

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 242
Author(s):  
Maria Chernyakova ◽  
Denys Malyshev ◽  
Brian van van Soelen ◽  
Shane O’Sullivan ◽  
Charlotte Sobey ◽  
...  

PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around a O9.5Ve star, LS 2883, with a period of ∼3.4 years. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broadband emission in the radio, X-ray, GeV, and TeV domains. One of the most unusual features of the system is an outburst of GeV energies around the periastron, during which the energy release substantially exceeds the spin down luminosity under the assumption of the isotropic emission. In this paper, we present the first results of a recent multi-wavelength campaign (radio, optical, and X-ray bands) accompanied by the analysis of publicly available GeV Fermi/LAT data. The campaign covered a period of more than 100 days around the 2021 periastron and revealed substantial differences from previously observed passages. We report a major delay of the GeV flare, weaker X-ray flux during the peaks, which are typically attributed to the times when the pulsar crosses the disk, and the appearance of a third X-ray peak never observed before. We argue that these features are consistent with the emission cone model proposed by us previously, in the case of a sparser and clumpier disk of the Be star.

1998 ◽  
Vol 179 ◽  
pp. 237-237 ◽  
Author(s):  
D. Leisawitz ◽  
S.W. Digel ◽  
S. Geitz

The Astrophysics Data Facility at NASA Goddard Space Flight Center supports the processing, management, and dissemination of data obtained by past, current, and future NASA and international astrophysics missions, and promotes the effective use of those data by the astrophysics community, educators, and the public. Our Multiwavelength Milky Way poster was printed for broad distribution. It depicts the Galaxy at radio, infrared, optical, X-ray, and gamma-ray wavelengths. In particular, the poster contains images of the Galactic 21-cm and CO (J = 1 → 0) line emission, and IRAS 12, 60, and 100 μm, COBE/DIRBE 1.25, 2.2, and 3.5 μm, Digitized Sky Survey optical wavelength, ROSAT/PSPC 0.25, 0.75, and 1.5 keV X-ray, and CGRO/EGRET E > 100 MeV gamma ray broadband emission. All of the data sets are publicly available. Captions describe the Milky Way and what can be learned about the Galaxy from measurements made in each segment of the electromagnetic spectrum. The poster is intended to be an educational tool, one that will stimulate heightened awareness by laypersons of NASA's contribution to modern astronomy.Through an interface available on the World Wide Web at http://adf.gsfc.nasa.gov/adf/adf.html one may view the images that appear on the poster, read the poster captions, and locate the archived data and references.


2020 ◽  
Vol 497 (1) ◽  
pp. 648-655
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
S Mc Keague ◽  
B van Soelen ◽  
J P Marais ◽  
...  

ABSTRACT PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around an O9.5Ve star, LS 2883, with a period of ∼3.4 yr. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad-band emission in the radio, X-rays, GeV, and TeV domains. While the radio, X-ray, and TeV light curves show rather similar behaviour, the GeV light curve appears very different with a huge outburst about a month after a periastron. The energy release during this outburst seems to significantly exceed the spin-down luminosity of the pulsar and both the GeV light curve and the energy release vary from one orbit to the next. In this paper, we present for the first time the results of optical observations of the system in 2017, and also reanalyse the available X-ray and GeV data. We present a new model in which the GeV data are explained as a combination of the bremsstrahlung and inverse Compton emission from the unshocked and weakly shocked electrons of the pulsar wind. The X-ray and TeV emission is produced by synchrotron and inverse Compton emission of energetic electrons accelerated on a strong shock arising due to stellar/pulsar winds collision. The brightness of the GeV flare is explained in our model as a beaming effect of the energy released in a cone oriented, during the time of the flare, in the direction of the observer.


2019 ◽  
Vol 622 ◽  
pp. A211 ◽  
Author(s):  
Francesco Coti Zelati ◽  
Alessandro Papitto ◽  
Domitilla de Martino ◽  
David A. H. Buckley ◽  
Alida Odendaal ◽  
...  

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4−650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of ∼20.1 (3300–10500 Å). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3–79 keV) spectrum was adequately described by an absorbed power law model with photon index of Γ = 1.63  ±  0.01 (at 1σ c.l.), and the X-ray luminosity was (2.16  ±  0.04)  ×  1034 erg s−1 for a distance of 4 kpc. Based on observations with different instruments, the X-ray luminosity has remained relatively steady over the past ∼15 years. J1109 is spatially associated with the gamma-ray source FL8Y J1109.8−6500, which was detected with Fermi at an average luminosity of (1.5  ±  0.2)  ×  1034 erg s−1 (assuming the distance of J1109) over the 0.1–300 GeV energy band between 2008 and 2016. The source was undetected during ATCA radio observations that were simultaneous with NuSTAR, down to a 3σ flux upper limit of 18 μJy beam−1 (at 7.25 GHz). We show that the phenomenological properties of J1109 point to a binary transitional pulsar candidate currently in a sub-luminous accretion disk state, and that the upper limits derived for the radio emission are consistent with the expected radio luminosity for accreting neutron stars at similar X-ray luminosities.


2020 ◽  
Vol 495 (1) ◽  
pp. 365-374 ◽  
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
P Blay ◽  
B van Soelen ◽  
S Tsygankov

ABSTRACT PSR J2032+4127 is only the second known gamma-ray binary where it is confirmed that a young radio pulsar is in orbit around a Be-star. The interaction of the pulsar wind with the mass outflow from the companion leads to broad-band emission from radio up to TeV energies. In this paper we present results of optical monitoring of the 2017 periastron passage with the Nordic Optical Telescope. These observations are complemented by X-ray (Swift/XRT, NuSTAR) and GeV (Fermi/LAT) monitoring. Joint analysis of the evolution of the parameters of the H α line and the broad-band (X-ray to TeV) spectral shape allows us to propose a model linking the observed emission to the interaction of the pulsar and Be-star winds under the assumption of the inclined disc geometry. Our model allows the observed flux and spectral evolution of the system to be explained in a self-consistent way.


2003 ◽  
Vol 214 ◽  
pp. 135-136 ◽  
Author(s):  
Diane S. Wong ◽  
James M. Cordes ◽  
Shami Chatterjee ◽  
Ellen G. Zweibel ◽  
John P. Finley ◽  
...  

As part of a multi-wavelength study, we report on a 50 ks Chandra/ACIS observation of the Guitar Nebula, a bow shock nebula associated with the radio pulsar B2224+65. We see a “hot spot” at the tip of the bow shock. We also notice a “jet” of X-ray emission at position angle (PA) −69°. However, the proper motion of the pulsar and the axis of optical emission is at PA 52°.1. We discuss the resulting interpretations of the relativistic pulsar wind and the surrounding ISM.


2012 ◽  
Vol 08 ◽  
pp. 372-375
Author(s):  
J. MOLDÓN ◽  
M. RIBÓ ◽  
J. M. PAREDES ◽  
W. BRISKEN ◽  
M. KRAMER ◽  
...  

The supernova remnant SNR G016.8-01.1 is close to the gamma-ray binary system LS 5039, one of the five gamma-ray binaries currently known. LS 5039 appears to have been born in the SNR G016.8-01.1 just ~ 105 yr ago, as indicated by its proper motion. This association would provide direct implications on the nature and properties of the unknown compact object in the binary system. However, there is another source close to SNR G016.8-01.1 that could have been born during the SN explosion: the pulsar PSR J1825-1446, for which the proper motion is unknown. We are measuring the proper motion of both sources by means of VLBI radio observations in order to constrain their origin. Here we present the first results of a VLBA campaign on PSR J1825-1446 to measure its proper motion. We discuss the possible kinematical age of this pulsar, and the possible association of LS 5039 and PSR J1825-1446 with the supernova remnant.


2012 ◽  
Vol 8 (S291) ◽  
pp. 322-322 ◽  
Author(s):  
Walid Majid

AbstractWe are currently undertaking a monitoring campaign with NASA 70-m antennas to capture a large sample of Crab Giant Pulses (CGP) at multiple radio wavelengths. The goal of this campaign is to carry out a correlation study of CGPs at radio frequencies with pulsed emission from the Crab pulsar with Fermi photons at X-ray. After a year of this study, we expect around 200 Fermi photons to coincide with a CGP radio-frequency detection, allowing us to either confirm a predicted correlation in average gamma-ray pulsed flux increase with GP emission, or place a tight upper limit, at least a factor of 10 more constraining than previous work. We will report on the status of this campaign and will present our preliminary results and prospects for future improvements in receivers and back-end instrumentation.


2021 ◽  
Author(s):  
Gor Oganesyan ◽  
Sergey Karpov ◽  
Martin Jelinek ◽  
Gregory Beskin ◽  
Samuele Ronchini ◽  
...  

Abstract Long gamma-ray bursts (GRBs) are produced by the dissipation of ultra-relativistic jets launched by newly-born black holes after the collapse of massive stars. Right after the luminous and highly variable gamma-ray emission, the multi-wavelength afterglow is released by the external dissipation of the jet in circumburst medium. We report the discovery of a very bright (10 mag) optical emission 28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. Early multi-filter observations allowed us to witness the end of the shock wave propagation into the GRB ejecta. We observed the spectral transition from a bright reverse to the forward shock emission, demonstrating that the early and late GRB multi-wavelength emission is originated from a very narrow jet propagating into an unusually rarefied interstellar medium. We also find evidence of an additional component of radiation, coming from the jet wings which is able explain the uncorrelated optical/X-ray emission.


2005 ◽  
Vol 192 ◽  
pp. 459-466
Author(s):  
Alberto J. Castro-Tirado

SummarySince their discovery in 1967 Gamma-ray bursts (GRBs) have been puzzling to astrophysicists. With the advent of a new generation of X–ray satellites in the late 90’s, it was possible to carry out deep multi-wavelength observations of the counterparts associated with the long duration GRBs class just within a few hours of occurrence, thanks to the observation of the fading X-ray emission that follows the more energetic gamma-ray photons once the GRB event has ended. The fact that this emission (the afterglow) extends at longer wavelengths, led to the discovery of optical/IR/radio counterparts in 1997-2003, greatly improving our understanding of these sources. The classical, long duration GRBs, have been observed to originate at cosmological distances in a range of redshifts with 0.1685 ≤ z ≤ 4.50 implying energy releases of ~ 1051 ergs. The recent results on GRB 021004 and GRB 030329 confirm that the central engines that power these extraordinary events are due to be collapse of massive stars rather than the merging of compact objects as previously also suggested. Short GRBs still remain a mystery as no counterparts have been detected so far.


Sign in / Sign up

Export Citation Format

Share Document