scholarly journals Quantum Cosmology with Third Quantisation

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 404
Author(s):  
Salvador J. Robles-Pérez

We reviewed the canonical quantisation of the geometry of the spacetime in the cases of a simply and a non-simply connected manifold. In the former, we analysed the information contained in the solutions of the Wheeler–DeWitt equation and showed their interpretation in terms of the customary boundary conditions that are typically imposed on the semiclassical wave functions. In particular, we reviewed three different paradigms for the quantum creation of a homogeneous and isotropic universe. For the quantisation of a non-simply connected manifold, the best framework is the third quantisation formalism, in which the wave function of the universe is seen as a field that propagates in the space of Riemannian 3-geometries, which turns out to be isomorphic to a (part of a) 1+5 Minkowski spacetime. Thus, the quantisation of the wave function follows the customary formalism of a quantum field theory. A general review of the formalism is given, and the creation of the universes is analysed, including their initial expansion and the appearance of matter after inflation. These features are presented in more detail in the case of a homogeneous and isotropic universe. The main conclusion in both cases is that the most natural way in which the universes should be created is in entangled universe–antiuniverse pairs.

2019 ◽  
Author(s):  
Vitaly Kuyukov

Modern general theory of relativity considers gravity as the curvature of space-time. The theory is based on the principle of equivalence. All bodies fall with the same acceleration in the gravitational field, which is equivalent to locally accelerated reference systems. In this article, we will affirm the concept of gravity as the curvature of the relative wave function of the Universe. That is, a change in the phase of the universal wave function of the Universe near a massive body leads to a change in all other wave functions of bodies. The main task is to find the form of the relative wave function of the Universe, as well as a new equation of gravity for connecting the curvature of the wave function and the density of matter.


2012 ◽  
Vol 21 (11) ◽  
pp. 1241002 ◽  
Author(s):  
SAMIR D. MATHUR

In recent years, we have come to understand how the information paradox is resolved in string theory. The huge entropy [Formula: see text] of black holes is realized by an explicit set of horizon sized "fuzzball" wave functions. The wave function of a collapsing shell spreads relatively quickly over this large phase space of states, invalidating the classical black hole geometry the shell would have created. We argue that a related effect may occur in the early Universe. When matter is crushed to high densities we can access a similarly large phase space of gravitational "fuzzball" solutions. While we cannot estimate specific quantities at this point, a qualitative analysis suggests that spreading over phase space creates an extra "push" expanding the Universe to larger volumes.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050046
Author(s):  
Sameerah Jamal

We consider a multiscalar tensor cosmology model described by Friedmann–Robertson–Walker (FRW) spacetime with zero spatial curvature. Three specific scalar interaction potentials that characterize the model are analyzed under a set of coordinate transformations. By implication, we solve for the wave function of the universe, reduce the dimension of the underlying Hamiltonian system and consequently, establish analytical solutions of the multiscalar model’s field equations.


Author(s):  
Roderich Tumulka

One way of obtaining a version of quantum mechanics without observers, and thus of solving the paradoxes of quantum mechanics, is to modify the Schrödinger evolution by implementing spontaneous collapses of the wave function. An explicit model of this kind was proposed in 1986 by Ghirardi, Rimini & Weber (GRW), involving a nonlinear, stochastic evolution of the wave function. We point out how, by focusing on the essential mathematical structure of the GRW model and a clear ontology, it can be generalized to (regularized) quantum field theories in a simple and natural way.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1205
Author(s):  
Amnon Moalem ◽  
Alexander Gersten

Quantum equations for massless particles of any spin are considered in stationary uncharged axially symmetric spacetimes. It is demonstrated that up to a normalization function, the angular wave function does not depend on the metric and practically is the same as in the Minkowskian case. The radial wave functions satisfy second order nonhomogeneous differential equations with three nonhomogeneous terms, which depend in a unique way on time and space curvatures. In agreement with the principle of equivalence, these terms vanish locally, and the radial equations reduce to the same homogeneous equations as in Minkowski spacetime.


1997 ◽  
Vol 12 (05) ◽  
pp. 859-871
Author(s):  
Y. Ohkuwa ◽  
T. Kitazoe

We consider a quantum cosmology with a massless background scalar field ϕB and adopt a wave packet as the wave function. This wave packet is a superposition of the WKB form wave functions, each of which has a definite momentum of the scalar field ϕB. In this model it is shown that to trace the formalism of the WKB time is seriously difficult without introducing a complex value for a time. We define a semiclassical real time variable TP from the phase of the wave packet and calculate it explicitly. We find that, when a quantum matter field ϕQ is coupled to the system, an approximate Schrödinger equation for ϕQ holds with respect to TP in a region where the size a of the universe is large and |ϕB| is small.


2019 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Gravity as the curvature of the wave function of the universe.


2019 ◽  
Vol 950 (8) ◽  
pp. 2-11
Author(s):  
S.A. Tolchelnikova ◽  
K.N. Naumov

The Euclidean geometry was developed as a mathematical system due to generalizing thousands years of measurements on the plane and spherical surfaces. The development of celestial mechanics and stellar astronomy confirmed its validity as mathematical principles of natural philosophy, in particular for studying the Solar System bodies’ and Galaxy stars motions. In the non-Euclidean geometries by Lobachevsky and Riemann, the third axiom of modern geometry manuals is substituted. We show that the third axiom of these manuals is a corollary of the Fifth Euclidean postulate. The idea of spherical, Riemannian space of the Universe and local curvatures of space, depending on body mass, was inculcated into celestial mechanics, astronomy and geodesy along with the theory of relativity. The mathematical apparatus of the relativity theory was created from immeasurable quantities


Author(s):  
David D. Nolte

Galileo Unbound: A Path Across Life, The Universe and Everything traces the journey that brought us from Galileo’s law of free fall to today’s geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman’s dilemma of quantum particles taking all paths at once—setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.


Sign in / Sign up

Export Citation Format

Share Document