scholarly journals The Autophagy Protein ATG16L1 Is Required for Sindbis Virus-Induced eIF2α Phosphorylation and Stress Granule Formation

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Matthew Jefferson ◽  
Benjamin Bone ◽  
Jasmine L. Buck ◽  
Penny P. Powell

Sindbis virus (SINV) infection induces eIF2α phosphorylation, which leads to stress granule (SG) assembly. SINV infection also stimulates autophagy, which has an important role in controlling the innate immune response. The importance of autophagy to virus-induced translation arrest is not well understood. In this study, we show that the autophagy protein ATG16L1 not only regulates eIF2α phosphorylation and the translation of viral and antiviral proteins, but also controls SG assembly. Early in infection (2hpi), capsids were recruited by host factors Cytotoxic Granule-Associated RNA Binding Protein (TIA1), Y-box binding protein 1 (YBX1), and vasolin-containing protein 1 (VCP), to a single perinuclear body, which co-localized with the viral pattern recognition sensors, double stranded RNA-activated protein-kinase R (PKR) and RIG-I. By 6hpi, there was increased eIF2α phosphorylation and viral protein synthesis. However, in cells lacking the autophagy protein ATG16L1, SG assembly was inhibited and capsid remained in numerous small foci in the cytoplasm containing YBX1, TIA1 with RIG-I, and these persisted for over 8hpi. In the absence of ATG16L1, there was little phosphorylation of eIF2α and low levels of viral protein synthesis. Compared to wild type cells, there was potentiated interferon protein and interferon-stimulated gene (ISG) mRNA expression. These results show that ATG16L1 is required for maximum eIF2α phosphorylation, proper SG assembly into a single perinuclear focus, and for attenuating the innate immune response. Therefore, this study shows that, in the case of SINV, ATG16L1 is pro-viral, required for SG assembly and virus replication.

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Santiago Vidal ◽  
Ahmed El Motiam ◽  
Rocío Seoane ◽  
Viktorija Preitakaite ◽  
Yanis Hichem Bouzaher ◽  
...  

ABSTRACT Some viruses take advantage of conjugation of ubiquitin or ubiquitin-like proteins to enhance their own replication. One example is Ebola virus, which has evolved strategies to utilize these modification pathways to regulate the viral proteins VP40 and VP35 and to counteract the host defenses. Here, we show a novel mechanism by which Ebola virus exploits the ubiquitin and SUMO pathways. Our data reveal that minor matrix protein VP24 of Ebola virus is a bona fide SUMO target. Analysis of a SUMOylation-defective VP24 mutant revealed a reduced ability to block the type I interferon (IFN) pathway and to inhibit IFN-mediated STAT1 nuclear translocation, exhibiting a weaker interaction with karyopherin 5 and significantly diminished stability. Using glutathione S-transferase (GST) pulldown assay, we found that VP24 also interacts with SUMO in a noncovalent manner through a SIM domain. Mutation of the SIM domain in VP24 resulted in a complete inability of the protein to downmodulate the IFN pathway and in the monoubiquitination of the protein. We identified SUMO deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7) as an interactor and a negative modulator of VP24 ubiquitination. Finally, we show that mutation of one ubiquitination site in VP24 potentiates the IFN modulatory activity of the viral protein and its ability to block IFN-mediated STAT1 nuclear translocation, pointing to the ubiquitination of VP24 as a negative modulator of the VP24 activity. Altogether, these results indicate that SUMO interacts with VP24 and promotes its USP7-mediated deubiquitination, playing a key role in the interference with the innate immune response mediated by the viral protein. IMPORTANCE The Ebola virus VP24 protein plays a critical role in escape of the virus from the host innate immune response. Therefore, deciphering the molecular mechanisms modulating VP24 activity may be useful to identify potential targets amenable to therapeutics. Here, we identify the cellular proteins USP7, SUMO, and ubiquitin as novel interactors and regulators of VP24. These interactions may represent novel potential targets to design new antivirals with the ability to modulate Ebola virus replication.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 499 ◽  
Author(s):  
Shelby Powell Kesterson ◽  
Jeffery Ringiesn ◽  
Vikram N. Vakharia ◽  
Brian S. Shepherd ◽  
Douglas W. Leaman ◽  
...  

Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.


2011 ◽  
Vol 41 (4) ◽  
pp. 1086-1097 ◽  
Author(s):  
Fanlei Hu ◽  
Xiaofei Yu ◽  
Hongxia Wang ◽  
Daming Zuo ◽  
Chunqing Guo ◽  
...  

Author(s):  
Hector Moreno ◽  
Stefan Kunz

The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to Old World mammarenavirus, these viruses are not able to completely suppress the innate immune response, and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their non-pathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor-protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to prevent the effect of PKR on viral protein translation and its viral titer is inhibited when PKR is pre-stimulated via IFN-I. Here, we provide first evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. IMPORTANCE: The mechanisms for innate immune evasion are key for emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses such as JUNV or MACV trigger a weaker IFN response than non-pathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. In this study, we found that TCRV protein expression and viral propagation are inhibited from early times after infection, and when externally activated, PKR inhibits TCRV viral progeny production. Our present findings further characterize the innate immune response in absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chen Li ◽  
Lu Feng ◽  
Wei-Wei Luo ◽  
Cao-Qi Lei ◽  
Mi Li ◽  
...  

AbstractMITA (also known as STING) is an ER-located adaptor protein, which mediates DNA-triggered innate immune response and is critically involved in autoimmune diseases and tumorigenesis. MITA is regulated by post-translational modifications, but how post-transcriptional mechanisms are involved in the regulation of MITA is still largely unknown. Here, we identified the RNA-binding protein LUC7L2 as a negative regulator of DNA virus-triggered innate immune response. LUC7L2-deficient mice exhibited resistance to lethal herpes simplex virus 1 (HSV-1) infection and reduced HSV-1 loads in the brain. Mechanistically, LUC7L2 directly bound to intron 3 of MITA precursor messenger RNA, inhibited its splicing and promoted its nonsense-mediated decay, leading to its downregulation at protein level. LUC7L2-deficient cells had markedly increased MITA level, leading to heightened innate antiviral response. Finally, LUC7L2 was induced following HSV-1 infection. Our findings reveal a feedback negative post-transcriptional regulatory mechanism for regulation of MITA-mediated innate immune response to viral and aberrant cellular DNA.


2011 ◽  
Vol 13 (5) ◽  
pp. 540-549 ◽  
Author(s):  
Seung-Soon Im ◽  
Leyla Yousef ◽  
Christoph Blaschitz ◽  
Janet Z. Liu ◽  
Robert A. Edwards ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1313
Author(s):  
Hector Moreno ◽  
Stefan Kunz

The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their nonpathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to suppress the effect of activated PKR, resulting in the inhibition of a viral titer. Here, we provide original evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. The mechanisms for innate immune evasion are key for the emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses, such as JUNV or MACV, trigger a weaker IFN response than nonpathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. Our present findings further characterize the innate immune response in the absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection. Moreover, TCRV fails to suppress activated PKR, resulting in viral progeny production inhibition.


2016 ◽  
Vol 90 (8) ◽  
pp. 3839-3848 ◽  
Author(s):  
Benjamin Ziehr ◽  
Heather A. Vincent ◽  
Nathaniel J. Moorman

ABSTRACTHuman cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication.IMPORTANCETo successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.


Sign in / Sign up

Export Citation Format

Share Document