scholarly journals Alphaherpesvirus gB Homologs Are Targeted to Extracellular Vesicles, but They Differentially Affect MHC Class II Molecules

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 429 ◽  
Author(s):  
Kinga Grabowska ◽  
Magda Wąchalska ◽  
Małgorzata Graul ◽  
Michał Rychłowski ◽  
Krystyna Bieńkowska-Szewczyk ◽  
...  

Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Praneet K. Sandhu ◽  
Nicholas J. Buchkovich

ABSTRACT Human cytomegalovirus (HCMV) is a ubiquitous pathogen that encodes many proteins to modulate the host immune response. Extensive efforts have led to the elucidation of multiple strategies employed by HCMV to effectively block NK cell targeting of virus-infected cells and the major histocompatibility complex (MHC) class I-primed CD8+ T cell response. However, viral regulation of the MHC class II-mediated CD4+ T cell response is understudied in endogenous MHC class II-expressing cells, largely because the popular cell culture systems utilized for studying HCMV do not endogenously express MHC class II. Of the many cell types infected by HCMV in the host, myeloid cells, such as monocytes, are of particular importance due to their role in latency and subsequent dissemination throughout the host. We investigated the impact of HCMV infection on MHC class II in Kasumi-3 cells, a myeloid-progenitor cell line that endogenously expresses the MHC class II gene, HLA-DR. We observed a significant reduction in the expression of surface and total HLA-DR at 72 h postinfection (hpi) and 120 hpi in infected cells. The decrease in HLA-DR expression was independent of the expression of previously described viral genes that regulate the MHC class II complex or the unique short (US) region of HCMV, a region expressing many immunomodulatory genes. The altered surface level of HLA-DR was not a result of increased endocytosis and degradation but was a result of a reduction in HLA-DR transcripts due to a decrease in the expression of the class II transactivator (CIITA). IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic herpesvirus that is asymptomatic for healthy individuals but that can lead to severe pathology in patients with congenital infections and immunosuppressed patients. Thus, it is important to understand the modulation of the immune response by HCMV, which is understudied in the context of endogenous MHC class II regulation. Using Kasumi-3 cells as a myeloid progenitor cell model endogenously expressing MHC class II (HLA-DR), this study shows that HCMV decreases the expression of HLA-DR in infected cells by reducing the transcription of HLA-DR transcripts early during infection independently of the expression of previously implicated genes. This is an important finding, as it highlights a mechanism of immune evasion utilized by HCMV to decrease the expression of MHC class II in a relevant cell system that endogenously expresses the MHC class II complex.


2019 ◽  
Author(s):  
Efstathios S Giotis ◽  
George Carnell ◽  
Erik F. Young ◽  
Saleena Ghanny ◽  
Patricia Soteropoulos ◽  
...  

AbstractBats are notorious reservoirs of diverse, potentially zoonotic viruses, exemplified by the evolutionarily distinct, influenza A-like viruses H17N10 and H18N11 (BatIVs). The surface glycoproteins [haemagglutinin (H) and neuraminidase (N)] of BatIVs neither bind nor cleave sialic acid receptors, which suggests that these viruses employ cell attachment and entry mechanisms that differ from those of classical influenza A viruses (IAVs). Identifying the cellular factors that mediate entry and determine susceptibility to infection will help assess the host range of BatIVs. Here, we investigated a range of cell lines from different species for their susceptibility to infection by pseudotyped viruses (PV) bearing bat H17 and/or N10 envelope glycoproteins. We show that a number of human haematopoietic cancer cell lines and the canine kidney MDCK II (but not MDCK I) cells are susceptible to H17-pseudotypes (H17-PV). We observed with microarrays and qRT-PCR that the dog leukocyte antigen DLA-DRA mRNA is over expressed in late passaged parental MDCK and commercial MDCK II cells, compared to early passaged parental MDCK and MDCK I cells, respectively. The human orthologue HLA-DRA encodes the alpha subunit of the MHC class II HLA-DR antigen-binding heterodimer. Small interfering RNA- or neutralizing antibody-targeting HLA-DRA, drastically reduced the susceptibility of Raji B cells to H17-PV. Conversely, over expression of HLA-DRA and its paralogue HLA-DRB1 on the surface of the unsusceptible HEK293T/17 cells conferred susceptibility to H17-PV. The identification of HLA-DR as an H17N10 entry mediator will contribute to a better understanding of the tropism of the virus and will elucidate its zoonotic transmission.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5054-5063 ◽  
Author(s):  
Yung-Chi Chang ◽  
Tse-Ching Chen ◽  
Chun-Ting Lee ◽  
Chih-Ya Yang ◽  
Hsei-Wei Wang ◽  
...  

Abstract Decoy receptor 3 (DcR3) is a member of the TNF receptor superfamily and is up-regulated in tumors originating from a diversity of lineages. DcR3 is capable of promoting angiogenesis, inducing dendritic cell apoptosis, and modulating macrophage differentiation. Since tumor-associated macrophages (TAMs) are the major infiltrating leukocytes in most malignant tumors, we used microarray technology to investigate whether DcR3 contributes to the development of TAMs. Among the DcR3-modulated genes expressed by TAMs, those that encode proteins involved in MHC class II (MHC-II)–dependent antigen presentation were down-regulated substantially, together with the master regulator of MHC-II expression (the class II transactivator, CIITA). The ERK- and JNK-induced deacetylation of histones associated with the CIITA promoters was responsible for DcR3-mediated down-regulation of MHC-II expression. Furthermore, the expression level of DcR3 in cancer cells correlated inversely with HLA-DR levels on TAMs and with the overall survival time of pancreatic cancer patients. The role of DcR3 in the development of TAMs was further confirmed using transgenic mice overexpressing DcR3. This elucidates the molecular mechanism of impaired MHC-II–mediated antigen presentation by TAMs, and raises the possibility that subversion of TAM-induced immunosuppression via inhibition of DcR3 expression might represent a target for the design of new therapeutics.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3040-3040
Author(s):  
Anja Mottok ◽  
Bruce W. Woolcock ◽  
Fong Chun Chan ◽  
Adele Telenius ◽  
Elizabeth A. Chavez ◽  
...  

Abstract Introduction: Constitutive MHC class II expression is a hallmark of antigen-presenting cells, including B cells, and is indispensable for the initiation of antigen specific immune responses. It has been shown that certain B cell lymphoma entities are able to evade immune recognition by downregulation of MHC molecules on the tumor cell surface. We have previously identified recurrent chromosomal rearrangements of CIITA, the master regulator of MHC class II transcription, as one possible mechanism to reduce MHC class II expression in primary mediastinal large B-cell lymphoma (PMBCL) and classical Hodgkin lymphoma (cHL) (Steidl et al., Nature 2011). Furthermore, we have recently described a 1.6kb breakpoint cluster region within intron 1 of CIITA and have shown in a small sample set of PMBCL cases that deletions, insertions and single nucleotide variants (SNV) are commonly found within this genomic region (Steidl, ASH abstract # 437, 2011). Therefore, we aimed to explore the frequency of these alterations and the correlation with CIITA and MHC class II protein expression in a larger cohort of PMBCL cases and to further characterize their functional significance. Methods: We have comprehensively analyzed 45 diagnostic PMBCL samples for the presence of coding sequence mutations as well as alterations within the promoter III region and the first 3kb of intron 1 using deep amplicon sequencing (Illumina TruSeq) and/or Sanger sequencing. In addition, we characterized the PMBCL-derived cell lines U2940 and Med-B1 by whole transcriptome paired-end sequencing (RNA-seq). To elucidate the functional consequences of the coding sequence mutations identified in these two cell lines we performed retroviral transductions of wild type CIITA and CIITA mutants in a CIITA and HLA-DR expression-negative cell line (DEV, nodular lymphocyte predominant Hodgkin lymphoma-derived). We subsequently analyzed CIITA mRNA expression using qRT-PCR and HLA-DR surface expression using flow cytometry. Furthermore, we applied immunohistochemistry (IHC) to determine expression levels of CIITA and HLA-DR in a large cohort of PMBCL samples represented on two tissue microarrays (TMA, n=149). The TMAs were also used for fluorescence in-situ hybridization (FISH) to evaluate the presence of copy number alterations or translocations of the CIITA locus. Results: FISH was interpretable in 115 samples with a CIITA break-apart (CIITA-ba) frequency of 33.9% (39/115). Correlative analyses revealed that decreased CIITA protein expression by IHC was significantly correlated with the presence of CIITA-ba (P=0.019), whereas HLA-DR expression was not correlated with CIITA-ba status alone (P=0.219). However, we could demonstrate a positive correlation between protein expression of CIITA and HLA-DR (Pearson r=0.45, P<0.0001). Within the subset of 45 PMBCL cases that were analyzed for the presence of genomic alterations, 39% were CIITA-ba positive (16/41), and in 31.8% (14/44) we observed coding sequence mutations and/or alterations affecting the promoter III region. 45.5% (20/44) of the cases presented indels and/or SNVs in intron 1. Using RNA-seq, we have detected two missense mutations in the Med-B1 cell line affecting both alleles in functionally relevant protein domains. Furthermore, we identified a novel NUBP1-CIITA fusion transcript in U2940 also harboring an SNV on the other allele resulting in the transcription of an elongated protein due to the loss of the original stop codon. Ectopic expression of these CIITA mutants in DEV, which has been shown to have undetectable levels of CIITA and HLA-DR due to a biallelic CIITA inactivation, revealed that these individual SNVs showed a diminished capability to restore HLA-DR surface expression in comparison to wild type CIITA as measured by flow cytometry. Conclusions: Here we show that the presence of CIITA rearrangements is significantly associated with low CIITA protein levels, and we could demonstrate that protein expression of CIITA and HLA-DR are positively correlated in PMBCL. Furthermore, CIITA is frequently targeted by coding sequence mutations and intronic deletions in PMBCL cell lines and clinical samples. Functional studies demonstrate that genomic alterations in CIITA contribute to downregulation of MHC class II expression in malignant lymphomas and therefore represent a potent mechanism of acquired immune privilege and escape from immune surveillance. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 16 (7) ◽  
pp. 3314-3322 ◽  
Author(s):  
Hortensia de la Fuente ◽  
María Mittelbrunn ◽  
Lorena Sánchez-Martín ◽  
Miguel Vicente-Manzanares ◽  
Amalia Lamana ◽  
...  

Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells.


2012 ◽  
Vol 11 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Olesya Chornoguz ◽  
Alexei Gapeev ◽  
Michael C. O'Neill ◽  
Suzanne Ostrand-Rosenberg

The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii− cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii− cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii− tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii− MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii− cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii− and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii− cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii− cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3325-3332 ◽  
Author(s):  
Anders Woetmann ◽  
Paola Lovato ◽  
Karsten W. Eriksen ◽  
Thorbjørn Krejsgaard ◽  
Tord Labuda ◽  
...  

AbstractBacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients. The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant T cells enhance proliferation of the malignant cells in an SE- and MHC class II–dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4+ T-cell lines also enhance proliferation of the malignant cells. The growth-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which infections with SE-producing bacteria may contribute to pathogenesis of CTCL.


Cell ◽  
1988 ◽  
Vol 53 (6) ◽  
pp. 897-906 ◽  
Author(s):  
W. Reith ◽  
S. Satola ◽  
C. Herrero Sanchez ◽  
I. Amaldi ◽  
B. Lisowska-Grospierre ◽  
...  

2008 ◽  
Vol 28 (16) ◽  
pp. 5014-5026 ◽  
Author(s):  
Lei Jin ◽  
Paul M. Waterman ◽  
Karen R. Jonscher ◽  
Cindy M. Short ◽  
Nichole A. Reisdorph ◽  
...  

ABSTRACT Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (∼140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.


1992 ◽  
Vol 27 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Nobuaki Ishii ◽  
Mitsuro Chiba ◽  
Masahiro Iizuka ◽  
Hiroyuki Watanabe ◽  
Tomonori Ishioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document