scholarly journals Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C2254/H752 Strain in French Horses Showing no Major Impact on the Strain Behaviour

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1160
Author(s):  
Gabrielle Sutton ◽  
Côme Thieulent ◽  
Christine Fortier ◽  
Erika S. Hue ◽  
Christel Marcillaud-Pitel ◽  
...  

Equid herpesvirus 1 is one of the most common viral pathogens in the horse population and is associated with respiratory disease, abortion and still-birth, neonatal death and neurological disease. A single point mutation in the DNA polymerase gene (ORF30: A2254G, N752D) has been widely associated with neuropathogenicity of strains, although this association has not been exclusive. This study describes the fortuitous isolation of a strain carrying a new genotype C2254 (H752) from an outbreak in France that lasted several weeks in 2018 and involved 82 horses, two of which showed neurological signs of disease. The strain was characterised as UL clade 10 using the equid herpesvirus 1 (EHV-1) multi-locus sequence typing (MLST) classification but has not been identified or isolated since 2018. The retrospective screening of EHV-1 strains collected between 2016 and 2018 did not reveal the presence of the C2254 mutation. When cultured in vitro, the C2254 EHV-1 strain induced a typical EHV-1 syncytium and cytopathic effect but no significant difference was observed when compared with A2254 and G2254 EHV-1 strains. An experimental infection was carried out on four Welsh mountain ponies to confirm the infectious nature of the C2254 strain. A rapid onset of marked respiratory disease lasting at least 2 weeks, with significant virus shedding and cell-associated viraemia, was observed. Finally, an in vitro antiviral assay using impedance measurement and viral load quantification was performed with three antiviral molecules (ganciclovir (GCV), aciclovir (ACV) and aphidicolin (APD)) on the newly isolated C2254 strain and two other A/G2254 field strains. The three strains showed similar sensitivity to ganciclovir and aphidicolin but both C2254 and A2254 strains were more sensitive to aciclovir than the G2254 strain, based on viral load measurement.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bingran Wang ◽  
Tiancheng Lou ◽  
Lingling Wei ◽  
Wenchan Chen ◽  
Longbing Huang ◽  
...  

AbstractAlternaria alternata, a causal agent of leaf blights and spots on a wide range of hosts, has a high risk of developing resistance to fungicides. Procymidone, a dicarboximide fungicide (DCF), has been widely used in controlling Alternaria leaf blights in China for decades. However, the resistance of A. alternata against DCFs has rarely been reported from crucifer plants. A total of 198 A. alternata isolates were collected from commercial fields of broccoli and cabbage during 2018–2019, and their sensitivities to procymidone were determined. Biochemical and molecular characteristics were subsequently compared between the high-level procymidone-resistant (ProHR) and procymidone-sensitive (ProS) isolates, and also between ProHR isolates from broccoli and cabbage. Compared with ProS isolates, the mycelial growth rate, sporulation capacity and virulence of most ProHR isolates were reduced; ProHR isolates displayed an increased sensitivity to osmotic stresses and a reduced sensitivity to sodium dodecyl sulfate (SDS); all ProHR isolates showed a reduced sensitivity to hydrogen peroxide (H2O2) except for the isolate B102. Correlation analysis revealed a positive cross-resistance between procymidone and iprodione, or fludioxonil. When treated with 10 μg/mL of procymidone, both mycelial intracellular glycerol accumulations (MIGAs) and relative expression of AaHK1 in ProS isolates were higher than those in ProHR isolates. Sequence alignment of AaHK1 from ten ProHR isolates demonstrated that five of them possessed a single-point mutation (P94A, V612L, E708K or Q924STOP), and four isolates had an insertion or a deletion in their coding regions. No significant difference in biochemical characteristics was observed among ProHR isolates from two different hosts, though mutations in AaHK1 of the cabbage-originated ProHR isolates were distinct from those of the broccoli-originated ProHR isolates.


Haematologica ◽  
2021 ◽  
Author(s):  
Osheiza Abdulmalik ◽  
Noureldien H. E. Darwish ◽  
Vandhana Muralidharan-Chari ◽  
Maii Abu Taleb ◽  
Shaker A. Mousa

Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells (RBCs). RBC sickling increases adhesiveness of RBCs to alter the rheological properties of the blood and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crisis sequelae. Unfractionated heparin (UFH) and low-molecular weight heparins (LMWH) have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated nonanticoagulant heparin derivative (S-NACH) was previously reported to have none to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectindependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to directly inhibit sickling, thus employing a multimodal approach. Here, we show that S-NACH can (i) directly engage in Schiff-base reactions with HbS to decrease RBC sickling under both normoxia and hypoxia in vitro, ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and antiinflammatory cytokines. Thus, our proof of concept in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to LMWHs for the treatment of patients with SCD.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Ana R. Pereira ◽  
Jen Hsin ◽  
Ewa Król ◽  
Andreia C. Tavares ◽  
Pierre Flores ◽  
...  

ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ G193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ G193D filaments are more twisted and shorter than wild-type filaments. In vivo , M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Fatai S. Oladunni ◽  
Sanjay Sarkar ◽  
Stephanie Reedy ◽  
Udeni B. R. Balasuriya ◽  
David W. Horohov ◽  
...  

ABSTRACT Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-β) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction. IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.


2008 ◽  
Vol 82 (17) ◽  
pp. 8456-8464 ◽  
Author(s):  
Jianqiang Zhang ◽  
Peter J. Timoney ◽  
N. James MacLachlan ◽  
William H. McCollum ◽  
Udeni B. R. Balasuriya

ABSTRACT The horse-adapted virulent Bucyrus (VB) strain of equine arteritis virus (EAV) established persistent infection in high-passage-number human cervix cells (HeLa-H cells; passages 170 to 221) but not in low-passage-number human cervix cells (HeLa-L cells; passages 95 to 115) or in several other cell lines that were evaluated. However, virus recovered from the 80th passage of the persistently infected HeLa-H cells (HeLa-H-EAVP80) readily established persistent infection in HeLa-L cells. Comparative sequence analysis of the entire genomes of the VB and HeLa-H-EAVP80 viruses identified 16 amino acid substitutions, including 4 in the replicase (nsp1, nsp2, nsp7, and nsp9) and 12 in the structural proteins (E, GP2, GP3, GP4, and GP5). Reverse genetic studies clearly showed that substitutions in the structural proteins but not the replicase were responsible for the establishment of persistent infection in HeLa-L cells by the HeLa-H-EAVP80 virus. It was further demonstrated that recombinant viruses with substitutions in the minor structural proteins E and GP2 or GP3 and GP4 were unable to establish persistent infection in HeLa-L cells but that recombinant viruses with combined substitutions in the E (Ser53→Cys and Val55→Ala), GP2 (Leu15→Ser, Trp31→Arg, Val87→Leu, and Ala112→Thr), GP3 (Ser115→Gly and Leu135→Pro), and GP4 (Tyr4→His and Ile109→Phe) proteins or with a single point mutation in the GP5 protein (Pro98→Leu) were able to establish persistent infection in HeLa-L cells. In summary, an in vitro model of EAV persistence in cell culture was established for the first time. This system can provide a valuable model for studying virus-host cell interactions, especially virus-receptor interactions.


2000 ◽  
Vol 74 (23) ◽  
pp. 11027-11039 ◽  
Author(s):  
Eran Bacharach ◽  
Jason Gonsky ◽  
Kimona Alin ◽  
Marianna Orlova ◽  
Stephen P. Goff

ABSTRACT A yeast two-hybrid screen for cellular proteins that interact with the murine leukemia virus (MuLV) Gag protein resulted in the identification of nucleolin, a host protein known to function in ribosome assembly. The interacting fusions contained the carboxy-terminal 212 amino acids of nucleolin [Nuc(212)]. The nucleocapsid (NC) portion of Gag was necessary and sufficient to mediate the binding to Nuc(212). The interaction of Gag with Nuc(212) could be demonstrated in vitro and was manifested in vivo by the NC-dependent incorporation of Nuc(212) inside MuLV virions. Overexpression of Nuc(212), but not full-length nucleolin, potently and specifically blocked MuLV virion assembly and/or release. A mutant of MuLV, selected to specifically disrupt the binding to Nuc(212), was found to be severely defective for virion assembly. This mutant harbors a single point mutation in capsid (CA) adjacent to the CA-NC junction, suggesting a role for this region in Moloney MuLV assembly. These experiments demonstrate that selection for proteins that bind assembly domain(s) can yield potent inhibitors of virion assembly. These experiments also raise the possibility that a nucleolin-Gag interaction may be involved in virion assembly.


2011 ◽  
Vol 91 (3) ◽  
pp. e158-e162 ◽  
Author(s):  
H.D. Gravina ◽  
N.F. Tafuri ◽  
A. Silva Júnior ◽  
J.L.R. Fietto ◽  
T.T. Oliveira ◽  
...  

2016 ◽  
Vol 2 (10) ◽  
pp. e1501695 ◽  
Author(s):  
Ivan V. Smirnov ◽  
Andrey V. Golovin ◽  
Spyros D. Chatziefthimiou ◽  
Anastasiya V. Stepanova ◽  
Yingjie Peng ◽  
...  

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.


Sign in / Sign up

Export Citation Format

Share Document