scholarly journals Deformed Wing Virus in Two Widespread Invasive Ants: Geographical Distribution, Prevalence, and Phylogeny

Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1309
Author(s):  
Chun-Yi Lin ◽  
Chih-Chi Lee ◽  
Yu-Shin Nai ◽  
Hung-Wei Hsu ◽  
Chow-Yang Lee ◽  
...  

Spillover of honey bee viruses have posed a significant threat to pollination services, triggering substantial effort in determining the host range of the viruses as an attempt to understand the transmission dynamics. Previous studies have reported infection of honey bee viruses in ants, raising the concern of ants serving as a reservoir host. Most of these studies, however, are restricted to a single, local ant population. We assessed the status (geographical distribution/prevalence/viral replication) and phylogenetic relationships of honey bee viruses in ants across the Asia–Pacific region, using deformed wing virus (DWV) and two widespread invasive ants, Paratrechina longicornis and Anoplolepis gracilipes, as the study system. DWV was detected in both ant species, with differential geographical distribution patterns and prevenance levels between them. These metrics, however, are consistent across the geographical range of the same ant species. Active replication was only evident in P. longicornis. We also showed that ant-associated DWV is genetically similar to that isolated from Asian populations of honey bees, suggesting that local acquisition of DWV by the invasive ants may have been common at least in some of our sampled regions. Transmission efficiency of DWV to local arthropods mediated by ant, however, may vary across ant species.

2021 ◽  
Vol 9 (4) ◽  
pp. 845
Author(s):  
Loreley Castelli ◽  
Sofía Balbuena ◽  
Belén Branchiccela ◽  
Pablo Zunino ◽  
Joanito Liberti ◽  
...  

Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.


2014 ◽  
Vol 64 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Predrag Simeunović ◽  
Jevrosima Stevanović ◽  
Dejan Vidanović ◽  
Jakov Nišavić ◽  
Dejan Radović ◽  
...  

Abstract In this study 55 honey bee colonies from different Serbian regions were monitored for the presence of Deformed Wing Virus (DWV) and Acute Bee Paralysis Virus (ABPV) using TaqMan-based real-time RT-PCR assay. The results revealed the presence of DWV in each sampling location, and ABPV in 10 out of 11 apiaries. High frequency of DWV (76.4%) and ABPV (61.8%) positive samples in asymptomatic colonies can be the consequence of inefficient and postponed Varroa treatment concerning the role of this mite in the transmission and activation of honey bee viruses. The real-time RTPCR technique described in this paper is proved to be the most reliable method for this kind of investigation.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 239 ◽  
Author(s):  
Alexis Beaurepaire ◽  
Niels Piot ◽  
Vincent Doublet ◽  
Karina Antunez ◽  
Ewan Campbell ◽  
...  

In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.


2021 ◽  
Vol 1 ◽  
Author(s):  
Lina Zhang ◽  
Yanchun Deng ◽  
Hongxia Zhao ◽  
Ming Zhang ◽  
Chunsheng Hou

Honey bees play a vital role in providing pollination services for agricultural crops and wild flowering plants. However, the spillover risk of their pathogens to other pollinators or wild insects is becoming a cause for concern. There is some evidence that stingless bees can carry honey bee viruses, but little is known about the presence of honey bee viruses in stingless bees in China. Here, we investigate the occurrence of major honey bee pathogens including bacteria, fungi, and viruses in stingless bees (Apidae: sp.). Our results show that the stingless bees (Apidae: sp.) were mainly infected with DWV-A, but no DWV-B and DWV-C. Phylogenetic analysis on fragments of lp, RdRp, and VP3 of DWV-A indicated that genetic variation in VP3 might an important indicator for host-specific viruses, but it requires further study. Our results indicated that DWV-A is not only the major strain of virus currently circulating in managed bee colonies in China and globally, but in stingless bee species as a whole.


2021 ◽  
Author(s):  
Daniel B. Weaver ◽  
Brandi L. Cantarel ◽  
Christine Elsik ◽  
Dawn L. Lopez ◽  
Jay Evans

Abstract Background Varroa destructor mites, and the numerous viruses they vector to their honey bee hosts, are among the most serious threats to honey bee populations, causing mortality and morbidity to both the individual honey bee and colony, the negative effects of which convey to the pollination services provided by honey bees worldwide. Here we use a combination of targeted assays and deep RNA sequencing to determine host and microbial changes in resistant and susceptible honey bee lineages. We focus on three study sets. The first involves field sampling of sympatric western bees, some derived from resistant stock and some from stock susceptible to mites. The second experiment contrasts three colonies more deeply, two from susceptible stock from the southeastern U.S. and one from mite-resistant bee stock from Eastern Texas. Finally, to decouple the effects of mites from those of the viruses they vector, we experimentally expose honey bees to DWV in the laboratory, measuring viral growth and host responses. Results We find strong differences between resistant and susceptible bees in terms of both viral loads and bee gene expression. Interestingly, lineages of bees with naturally low levels of the mite-vectored Deformed wing virus, also carried lower levels of viruses not vectored by mites. By mapping gene expression results against current ontologies and other studies, we describe the impacts of mite parasitism, as well as viruses on bee health against two genetic backgrounds. We identify numerous genes and processes seen in other studies of stress and disease in honey bee colonies, though we find novel genes and new patterns of expression too. Conclusions We provide evidence that honey bees surviving in the face of parasitic mites do so through their abilities to resist the presence of devastating viruses vectored by these mites. By revealing responses to viral infection and mite parasitism in different lineages, our data identify candidate proteins for the evolution of mite tolerance and virus resistance.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5077 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Dimitar Gadjev ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study was to investigate incidence of six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a reverse transcription polymerase chain reaction (RT-PCR). A total of 250 adult honey bee samples were obtained from 50 colonies from eight apiaries situated in three different parts of the country (South, North and West Bulgaria). The results showed the highest prevalence of DWV followed by SBV and ABPV, and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe. In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Sa Yang ◽  
Philippe Gayral ◽  
Hongxia Zhao ◽  
Yaojun Wu ◽  
Xuejian Jiang ◽  
...  

Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.


2020 ◽  
Vol 23 (2) ◽  
pp. 206-217
Author(s):  
R. Shumkova ◽  
B. Neov ◽  
A. Georgieva ◽  
D. Teofanova ◽  
G. Radoslavov ◽  
...  

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of fundamental economic, agricultural and environmental importance. The aim of this study was to compare the prevalence of some parasitic and viral pathogens in local honey bees from the Rodope Mountains and plain regions. To achieve this goal, molecular screening for two of the most distributed Nosema spp. and molecular identification of six honey bee viruses – Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Chronic bee paralysis virus (CBPV), Sacbrood virus (SBV), Kashmir bee virus (KBV), and Black queen cell virus (BQCV) was performed. Molecular analysis was carried out on 168 honey bee samples from apiaries situated in three different parts of the country where a mix of different honey bee subspecies were reared. In South Bulgaria (the Rhodope Mountains), a local honey bee called Apis mellifera rodopica (a local ecotype of A. m. macedonica) was bred, while in the other two regions (plains) different introduced subspecies existed. The results showed that the samples from the lowland regions in the country were outlined with the highest prevalence (70.5%) of N. ceranae, while those from the mountainous parts had the lowest rate (5.2%). Four of the honey bee viruses were identified – DWV (10/5.9%), followed by SBV (6/3.6%) and ABPV (2/1.2%), and one case of BQCV. In conclusion, the local honey bee A. m. rodopica (despite the higher number of samples) has shown lower prevalence of both nosemosis and viral infections. Therefore, this honey bee has to be preserved as a part of the national biodiversity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunfei Wu ◽  
Xuye Yuan ◽  
Jing Li ◽  
Tatsuhiko Kadowaki

The deformed wing virus (DWV) has been best characterized among honey bee viruses; however, very little is known regarding the mechanisms of viral infection and replication due to the lack of immortalized honey bee cell lines. To solve this problem, we established an in vitro system using honey bee pupal tissue to reconstruct DWV binding and entry into the host cell, followed by translation of the RNA genome and polyprotein processing using RNA-dependent RNA polymerase (RdRP) as a marker. Using this system, the P-domain of the virion subunit VP1 was found to be essential for DWV infection, but not for binding and entry into the cell. DWV efficiently infected the head tissue derived from early but not late pupa, suggesting that undifferentiated cells are targeted for viral infection. Furthermore, we found that inhibitors of mammalian picornavirus 3C-protease, rupintrivir and quercetin suppressed RdRP synthesis, indicating that this in vitro system is also useful for screening a compound to control viral infection. Our in vitro system may help to understand the mechanism of DWV infection in host cells.


2018 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Denitsa Teofanova ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study is to detect six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a Reverse transcription polymerase chain reaction (RT-PCR). A total of 50 adult honey bee samples were obtained from apiaries situated in three different parts of the country (South, North and West Bulgaria).The results showed the highest prevalence of DWV (10/20 %), followed by SBV (6/12 %) and ABPV (2/4%), and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe.In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


Sign in / Sign up

Export Citation Format

Share Document