scholarly journals Tegument Protein pp150 Sequence-Specific Peptide Blocks Cytomegalovirus Infection

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2277
Author(s):  
Dipanwita Mitra ◽  
Mohammad H. Hasan ◽  
John T. Bates ◽  
Gene L. Bidwell ◽  
Ritesh Tandon

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 μM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150–capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.

Author(s):  
Dipanwita Mitra ◽  
Mohammad H Hasan ◽  
Gene L. Bidwell, III ◽  
Ritesh Tandon

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of final steps in virion maturation. Earlier studies indicated that three pp150nt (N terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B) and extend towards small capsid proteins atop nearby major capsid proteins forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 μM. Based on 3D modeling, pep-CR2 specifically interferes with the pp150-capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. To enhance the in-vivo inhibitory potential and bioavailability of pep-CR2, we conjugated it with a carrier molecule (elastin like polypeptide (ELP)). The ELP-pep-CR2 conjugate was expressed in E.coli and purified. Upon treatment with ELP-pep-CR2, HCMV showed significant titer reductions with no significant impact on cell viability. These results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor and can be developed into an effective antiviral.


2018 ◽  
Author(s):  
Wei Liu ◽  
Xinghong Dai ◽  
Jonathan Jih ◽  
Karen Chan ◽  
Phong Trang ◽  
...  

AbstractThe phosphoprotein pp150 is a structurally, immunogenically, and regulatorily important capsid-associated tegument protein abundant in β-herpesviruses including cytomegaloviruses (CMV), but absent in α-herpesviruses and Γ-herpesviruses. In human CMV (HCMV), bridging across each triplex and three adjacent major capsid proteins (MCPs) is a group of three pp150 subunits in a “△”-shapedfortifyingconfiguration, 320 of which encase and stabilize the genome-containing capsid. Because murine CMV (MCMV) has been used as a model for HCMV pathogenesis and therapeutic studies, one might expect that pp150 and the capsid in MCMV and HCMV have similar structures. Here, by cryoEM and sub-particle reconstructions, we have obtained structures of MCMV capsid and pp150 at near atomic resolutions and built their atomic models. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a “Λ”-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits encasing each HCMV capsid. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, pp150-deleted MCMV mutants remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results support targeting capsid proteins, but invalidate targeting pp150, when using MCMV as a model for HCMV pathogenesis and therapeutic studies.ImportanceCMV infection is a leading viral cause of congenital birth defects and often responsible for life-threating complications in immunocompromised individuals like AIDS and post-organ transplantation patients. Absence of effective vaccines and potent drugs against CMV infections has motivated animal-based studies, mostly based on the mouse model with MCMV, both for understanding pathogenesis of CMV infections and for developing therapeutic strategies. Here, we present the first atomic structures of MCMV and show that the organization patterns of capsid-associated tegument protein pp150 between human and mouse CMV are different despite their highly similar capsid structures. Our functional studies demonstrate that deleting pp150 does not eliminate MCMV infection in contrast to pp150’s essential role in HCMV infections. These results thus establish the validity to target capsid proteins, but raise concerns to target pp150, when using MCMV as HCMV model for pathogenesis and therapeutic studies.


2017 ◽  
Vol 114 (7) ◽  
pp. 1625-1630 ◽  
Author(s):  
Helle Jensen ◽  
Shih-Yu Chen ◽  
Lasse Folkersen ◽  
Garry P. Nolan ◽  
Lewis L. Lanier

Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein–Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3−/−) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral replication in spleen and liver were observed in MCMV-infectedEbi3−/−and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infectedEbi3−/−B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected a decrease in the sustained IL-10 production by NK cells and lower serum levels of IL-10 in the MCMV-infectedEbi3−/−B6 mice. Furthermore, we observed an increase in dendritic cell maturation markers and an increase in activated CD8+T cells. Thus, EBI3 dampens the immune response against MCMV infection, resulting in prolonged viral persistence.


2015 ◽  
Vol 89 (10) ◽  
pp. 5288-5297 ◽  
Author(s):  
Sheng Shen ◽  
Xing Jia ◽  
Haitao Guo ◽  
Hongyu Deng

ABSTRACTHerpesvirus nascent capsids, after assembly in the nucleus, must acquire a variety of tegument proteins during maturation. However, little is known about the identity of the tegument proteins that are associated with capsids in the nucleus or the molecular mechanisms involved in the nuclear egress of capsids into the cytoplasm, especially for the two human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), due to a lack of efficient lytic replication systems. Murine gammaherpesvirus 68 (MHV-68) is genetically related to human gammaherpesviruses and serves as an excellent model to study thede novolytic replication of gammaherpesviruses. We have previously shown that open reading frame 33 (ORF33) of MHV-68 is a tegument protein of mature virions and is essential for virion assembly and egress. However, it remains unclear how ORF33 is incorporated into virions. In this study, we first show that the endogenous ORF33 protein colocalizes with capsid proteins at discrete areas in the nucleus during viral infection. Cosedimentation analysis as well as an immunoprecipitation assay demonstrated that ORF33 is associated with both nuclear and cytoplasmic capsids. An immunogold labeling experiment using an anti-ORF33 monoclonal antibody revealed that ORF33-rich areas in the nucleus are surrounded by immature capsids. Moreover, ORF33 is associated with nucleocapsids prior to primary envelopment as well as with mature virions in the cytoplasm. Finally, we show that ORF33 interacts with two capsid proteins, suggesting that nucleocapsids may interact with ORF33 in a direct manner. In summary, we identified ORF33 to be a tegument protein that is associated with intranuclear capsids prior to primary envelopment, likely through interacting with capsid proteins in a direct manner.IMPORTANCEMorphogenesis is an essential step in virus propagation that leads to the generation of progeny virions. For herpesviruses, this is a complicated process that starts in the nucleus. Although the process of capsid assembly and genome packaging is relatively well understood, how capsids acquire tegument (the layer between the capsid and the envelope in a herpesvirus virion) and whether the initial tegumentation process takes place in the nucleus remain unclear. We previously showed that ORF33 of MHV-68 is a tegument protein and functions in both the nuclear egress of capsids and final virion maturation in the cytoplasm. In the present study, we show that ORF33 is associated with intranuclear capsids prior to primary envelopment and identify novel interactions between ORF33 and two capsid proteins. Our work provides new insights into the association between tegument proteins and nucleocapsids at an early stage of the virion maturation process for herpesviruses.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1078
Author(s):  
Fran Krstanović ◽  
William J. Britt ◽  
Stipan Jonjić ◽  
Ilija Brizić

Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.


2005 ◽  
Vol 201 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Astrid Krmpotic ◽  
Milena Hasan ◽  
Andrea Loewendorf ◽  
Tanja Saulig ◽  
Anne Halenius ◽  
...  

The NK cell–activating receptor NKG2D interacts with three different cellular ligands, all of which are regulated by mouse cytomegalovirus (MCMV). We set out to define the viral gene product regulating murine UL16-binding protein-like transcript (MULT)-1, a newly described NKG2D ligand. We show that MCMV infection strongly induces MULT-1 gene expression, but surface expression of this glycoprotein is nevertheless completely abolished by the virus. Screening a panel of MCMV deletion mutants defined the gene m145 as the viral regulator of MULT-1. The MCMV m145-encoded glycoprotein turned out to be necessary and sufficient to regulate MULT-1 by preventing plasma membrane residence of MULT-1. The importance of MULT-1 in NK cell regulation in vivo was confirmed by the attenuating effect of the m145 deletion that was lifted after NK cell depletion. Our findings underline the significance of escaping MULT-1/NKG2D signaling for viral survival and maintenance.


2018 ◽  
Vol 200 (10) ◽  
pp. 3420-3428 ◽  
Author(s):  
Tsukasa Nabekura ◽  
Zhiying Chen ◽  
Casey Schroeder ◽  
Taeju Park ◽  
Eric Vivier ◽  
...  

2020 ◽  
Vol 15 (5) ◽  
pp. 257-265
Author(s):  
Chanmoly Seng ◽  
Harsh Sharthiya ◽  
Vaibhav Tiwari ◽  
Michele Fornaro

Cytomegalovirus infection cause of severe developmental disorders of the CNS. Aim: In this study, we utilized a differentiated mouse-derived hippocampal cell line (dHT22) to understand mouse CMV (MCMV) infection. Results: The expression of immediate early genes ( IE) 1 and 3 confirmed the time-dependent susceptibility of dHT22 cells to MCMV infection. MCMV infection alters the cellular distribution of heparan sulfate (HS). In addition, pretreatment with heparinase significantly reduces virus infectivity. Conclusion: The compartmentalization of HS in MCMV infected cells suggests multiple roles of HS in virus life cycle ranging from viral entry to viral transport and cellular remodeling. An enzymatic heparinase assay confirmed that HS is critical for viral entry and trafficking.


Blood ◽  
2011 ◽  
Vol 117 (26) ◽  
pp. 7032-7041 ◽  
Author(s):  
Isabel Barao ◽  
Maite Alvarez ◽  
Erik Ames ◽  
Mark T. Orr ◽  
Heather E. Stefanski ◽  
...  

Abstract Natural killer (NK) cell subsets can be defined by the differential expression of inhibitory receptors for MHC class I molecules. Early after congenic HSCT, we found that Ly49G2high single-positive NK cells repopulated, displayed an activated phenotype, and were highly cytolytic. Over time, this subset was replaced with NK cells with a normal pattern of Ly49 expression. Treatment of mice with IL-2 also resulted in the rapid expansion of these Ly49G2high single-positive NK cells. Only the Ly49g (Klra7) Pro1 transcript was highly induced in both HSCT- and IL-2–treated recipients. MHC-independent expansion of the Ly49G2+ subset was also observed after Listeria monocytogenes or mouse cytomegalovirus infection. Our data indicate that during reconstitution after HSCT and various activation stimuli, Ly49G2+ NK cells represent the “first-responder” NK cells, which occur independently of NK-cell licensing via Ly49-MHC interactions. These data suggest that the inhibitory Ly49G2 receptor represents an activation marker on mouse NK cells under various conditions.


Sign in / Sign up

Export Citation Format

Share Document