scholarly journals Prediction of SARS-CoV-2 Variant Lineages Using the S1-Encoding Region Sequence Obtained by PacBio Single-Molecule Real-Time Sequencing

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2544
Author(s):  
Sébastien Lhomme ◽  
Justine Latour ◽  
Nicolas Jeanne ◽  
Pauline Trémeaux ◽  
Noémie Ranger ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.

2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Maria Grazia Cusi ◽  
David Pinzauti ◽  
Claudia Gandolfo ◽  
Gabriele Anichini ◽  
Gianni Pozzi ◽  
...  

ABSTRACT The complete genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate Siena-1/2020 was obtained by Nanopore sequencing, combining the direct RNA sequencing and amplicon sequencing approaches. The isolate belongs to the B1.1 lineage, which is prevalent in Europe, and contains a mutation in the spike protein coding sequence leading to the D614G amino acid change.


mBio ◽  
2021 ◽  
Author(s):  
Wen Su ◽  
Sin Fun Sia ◽  
Aaron J. Schmitz ◽  
Traci L. Bricker ◽  
Tyler N. Starr ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs).


Author(s):  
Shane Miersch ◽  
Mart Ustav ◽  
Zhijie Li ◽  
James B. Case ◽  
Safder Ganaie ◽  
...  

ABSTRACTCoronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.


Author(s):  
Masaud Shah ◽  
Bilal Ahmad ◽  
Sangdun Choi ◽  
Hyun Goo Woo

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is a novel beta coronavirus emerged in China in 2019. Coronavirus uses spike glycoprotein to interact with host angiotensin-converting enzyme 2 (ACE2) and ensure cell recognition. High infectivity of SARS-CoV-2 raises questions on spike-ACE2 binding affinity and its neutralization by anti-SARS-CoV monoclonal antibodies (mAbs). Here, we observed Val-to-Lys417 mutation in the receptor-binding domains (RBD) of SARS-CoV-2, which established a Lys-Asp electrostatic interaction enhancing its ACE2-binding. Pro-to-Ala475 substitution and Gly482 insertion in the AGSTPCNGV-loop of RBD hindered neutralization of SARS-CoV-2 by anti-SARS-CoV mAbs. In addition, we identified unique and structurally conserved conformational-epitopes on RBDs, which can be potential therapeutic targets. Collectively, we provide new insights into the mechanisms underlying the high infectivity of SARS-CoV-2 and development of new effective neutralizing agents.


2021 ◽  
Author(s):  
Jan-Philipp Mallm ◽  
Christian Bundschuh ◽  
Heeyoung Kim ◽  
Niklas Weidner ◽  
Simon Steiger ◽  
...  

SummaryVariants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are replacing the initial wild-type strain, jeopardizing current efforts to contain the pandemic. Amino acid exchanges in the spike protein are of particular concern as they can render the virus more transmissible or reduce vaccine efficacy. Here, we conducted whole genome sequencing of SARS-CoV-2 positive samples from the Rhine-Neckar district in Germany during January-March 2021. We detected a total of 166 samples positive for a variant with a distinct mutational pattern in the spike gene comprising L18F, L452R, N501Y, A653V, H655Y, D796Y and G1219V with a later gain of A222V. This variant was designated A.27.RN according to its phylogenetic clade classification. It emerged in parallel with the B.1.1.7 variant, increased to >50% of all SARS-CoV-2 variants by week five. Subsequently it decreased to <10% of all variants by calendar week eight when B.1.1.7 had become the dominant strain. Antibodies induced by BNT162b2 vaccination neutralized A.27.RN but with a two-to-threefold reduced efficacy as compared to the wild-type and B.1.1.7 strains. These observations strongly argue for continuous and comprehensive monitoring of SARS-CoV-2 evolution on a population level.


2021 ◽  
Author(s):  
Laura A VanBlargan ◽  
John M Errico ◽  
Peter Halfmann ◽  
Seth J Zost ◽  
James E. Crowe ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the development and deployment of highly effective antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible B.1.1.529 Omicron variant is especially concerning because of the number of mutations, deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (~12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected (S309). Our results suggest that several, but not all, of the antibody products in clinical use will lose efficacy against the B.1.1.529 Omicron variant and related strains.


2021 ◽  
Author(s):  
Laura VanBlargan ◽  
John Errico ◽  
Peter Halfmann ◽  
Seth Zost ◽  
James Crowe ◽  
...  

Abstract The emergence of the highly-transmissible B.1.1.529 Omicron variant of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is concerning for antibody countermeasure efficacy because of the number of mutations in the spike protein. Here, we tested a panel of anti-receptor binding domain monoclonal antibodies (mAbs) corresponding to those in clinical use by Vir Biotechnology (S309, the parent mAb of VIR-7831 [Sotrovimab]), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59) for their ability to neutralize an infectious B.1.1.529 Omicron isolate. Several mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost neutralizing activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (COV2-2196 and COV2-2130 combination, ~12-fold decrease) or minimally affected (S309). Our results suggest that several, but not all, of the antibodies in clinical use may lose efficacy against the B.1.1.529 Omicron variant.


Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. 650-655 ◽  
Author(s):  
Xiangyang Chi ◽  
Renhong Yan ◽  
Jun Zhang ◽  
Guanying Zhang ◽  
Yuanyuan Zhang ◽  
...  

Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo–eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document