variant lineage
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 15)

H-INDEX

3
(FIVE YEARS 2)

Author(s):  
Andrea Mancusi ◽  
Federico Capuano ◽  
Santa Girardi ◽  
Orlandina Di Maro ◽  
Elisabetta Suffredini ◽  
...  

Bivalve shellfish are readily contaminated by human pathogens present in waters impacted by municipal sewage, and the detection of SARS-CoV-2 in feces of infected patients and in wastewater has drawn attention to the possible presence of the virus in bivalves. The aim of this study was to collect data on SARS-CoV-2 prevalence in bivalve mollusks from harvesting areas of Campania region. A total of 179 samples were collected between September 2019 and April 2021 and were tested using droplet digital RT-PCR (dd RT-PCR) and real-time RT-PCR. Combining results obtained with different assays, SARS-CoV-2 presence was detected in 27/179 (15.1%) of samples. A median viral concentration of 1.1 × 102 and 1.4 × 102 g.c./g was obtained using either Orf1b nsp14 or RdRp/gene E, respectively. Positive results were unevenly distributed among harvesting areas and over time, positive samples being more frequent after January 2021. Partial sequencing of the spike region was achieved for five samples, one of which displaying mutations characteristic of the Alpha variant (lineage B.1.1.7). This study confirms that bivalve mollusks may bioaccumulate SARS-CoV-2 to detectable levels and that they may represent a valuable approach to track SARS-CoV-2 in water bodies and to monitor outbreak trends and viral diversity.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2544
Author(s):  
Sébastien Lhomme ◽  
Justine Latour ◽  
Nicolas Jeanne ◽  
Pauline Trémeaux ◽  
Noémie Ranger ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.


2021 ◽  
Author(s):  
Lukas Zemaitis ◽  
Gediminas Alzbutas ◽  
Dovydas Gecys ◽  
Andrey Komissarov ◽  
Arnoldas Pautienius ◽  
...  

Here we report the emergence of variant lineage B.1.1.523 that contains a set of mutations including 156_158del, E484K and S494P in Spike protein. E484K and S494P are known to significantly reduce SARS-CoV-2 neutralization by convalescent and vaccinee sera and are considered as mutations of concern. Lineage B.1.1.523 has presumably originated in Russian Federation and spread across European countries with the peak of transmission in April / May 2021. The B.1.1.523 lineage has now been reported from 27 countries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaan Yang ◽  
Peng Zhang ◽  
Wen Xiang Cheng ◽  
Youyong Lu ◽  
Wu Gang ◽  
...  

AbstractThe mutation of SARS-CoV-2 influences viral function as residue replacements affect both physiochemical properties and folding conformations. Although a large amount of data on SARS-CoV-2 is available, the investigation of how viral functions change in response to mutations is hampered by a lack of effective structural analysis. Here, we exploit the advances of protein structure fingerprint technology to study the folding conformational changes induced by mutations. With integration of both protein sequences and folding conformations, the structures are aligned for SARS-CoV to SARS-CoV-2, including Alpha variant (lineage B.1.1.7) and Delta variant (lineage B.1.617.2). The results showed that the virus evolution with change in mutational positions and physicochemical properties increased the affinity between spike protein and ACE2, which plays a critical role in coronavirus entry into human cells. Additionally, these structural variations impact vaccine effectiveness and drug function over the course of SARS-CoV-2 evolution. The analysis of structural variations revealed how the coronavirus has gradually evolved in both structure and function and how the SARS-CoV-2 variants have contributed to more severe acute disease worldwide.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guadalupe Miró ◽  
Javier Regidor-Cerrillo ◽  
Rocio Checa ◽  
Carlos Diezma-Díaz ◽  
Ana Montoya ◽  
...  

In this study, we describe SARS-CoV-2 infection dynamics in one cat and three dogs from households with confirmed human cases of COVID-19 living in the Madrid Community (Spain) at the time of expansion (December 2020 through June 2021) of the alpha variant (lineage B.1.1.7). A thorough physical exam and nasopharyngeal, oropharyngeal, and rectal swabs were collected for real-time reverse-transcription PCR (RT-qPCR) SARS-CoV-2 testing on day 0 and in successive samplings on days 7, 14, 21, and 47 during monitoring. Blood was also drawn to determine complete blood counts, biochemical profiles, and serology of the IgG response against SARS-CoV-2. On day 0, the cat case 1 presented with dyspnea and fever associated with a mild bronchoalveolar pattern. The dog cases 2, 3, and 4 were healthy, but case 2 presented with coughing, dyspnea, and weakness, and case 4 exhibited coughing and bilateral nasal discharge 3 and 6 days before the clinical exam. Case 3 (from the same household as case 2) remained asymptomatic. SARS-CoV-2 detection by RT-qPCR showed that the cat case 1 and the dog case 2 exhibited the lowest cycle threshold (Ct) (Ct < 30) when they presented clinical signs. Viral detection failed in successive samplings. Serological analyses revealed a positive IgG response in cat case 1 and dog cases 3 and 4 shortly after or simultaneously to virus shedding. Dog case 2 was seronegative, but seroconverted 21 days after SARS-CoV-2 detection. SARS-CoV-2 genome sequencing was attempted, and genomes were classified as belonging to the B.1.1.7 lineage.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1168
Author(s):  
Aisha Fakhroo ◽  
Hebah A. AlKhatib ◽  
Asmaa A. Al Thani ◽  
Hadi M. Yassine

The COVID-19 pandemic is still posing a devastating threat to social life and economics. Despite the modest decrease in the number of cases during September–November 2020, the number of active cases is on the rise again. This increase was associated with the emergence and spread of the new SARS-CoV-2 variants of concern (VOCs), such as the U.K. (B1.1.7), South Africa (B1.351), Brazil (P1), and Indian (B1.617.2) strains. The rapid spread of these new variants has raised concerns about the multiple waves of infections and the effectiveness of available vaccines. In this review, we discuss SARS-CoV-2 reinfection rates in previously infected and vaccinated individuals in relation to humoral responses. Overall, a limited number of reinfection cases have been reported worldwide, suggesting long protective immunity. Most reinfected patients were asymptomatic during the second episode of infection. Reinfection was attributed to several viral and/or host factors, including (i) underlying immunological comorbidities; (ii) low antibody titers due to the primary infection or vaccination; (iii) rapid decline in antibody response after infection or vaccination; and (iv) reinfection with a different SARS-CoV-2 variant/lineage. Infections after vaccination were also reported on several occasions, but mostly associated with mild or no symptoms. Overall, findings suggest that infection- and vaccine-induced immunity would protect from severe illness, with the vaccine being effective against most VOCs.


Author(s):  
Benjamin W. Neuman ◽  
Wesley A. Brashear ◽  
Marcel Brun ◽  
Sankar P. Chaki ◽  
Rebecca S. B. Fischer ◽  
...  

To better understand the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant lineage distribution in a college campus population, we carried out viral genome surveillance over a 7-week period from January to March 2021. Among the sequences were three novel viral variants: BV-1 with a B.1.1.7/20I genetic background and an additional spike mutation Q493R, associated with a mild but longer-than-usual COVID-19 case in a college-age person, BV-2 with a T478K mutation on a 20B genetic background, and BV-3, an apparent recombinant lineage. This work highlights the potential of an undervaccinated younger population as a reservoir for the spread and generation of novel variants. This also demonstrates the value of whole genome sequencing as a routine disease surveillance tool.


Nature ◽  
2021 ◽  
Vol 597 (7878) ◽  
pp. 703-708 ◽  
Author(s):  
Medini K. Annavajhala ◽  
Hiroshi Mohri ◽  
Pengfei Wang ◽  
Manoj Nair ◽  
Jason E. Zucker ◽  
...  

AbstractSARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1–3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


2021 ◽  
Author(s):  
Kanika Bansal ◽  
Sanjeet Kumar ◽  
Amandeep Kaur ◽  
Anu Singh ◽  
Prabhu B. Patil

AbstractGenus Xanthomonas is a group of phytopathogens which is phylogenetically related to Xylella, Stenotrophomonas and Pseudoxanthomonas following diverse lifestyles. Xylella is a lethal plant pathogen with highly reduced genome, atypical GC content and is taxonomically related to these three genera. Deep phylo-taxono-genomics reveals that Xylella is a variant Xanthomonas lineage that is sandwiched between Xanthomonas species. Comparative studies suggest the role of unique pigment and exopolysaccharide gene clusters in the emergence of Xanthomonas and Xylella clades. Pan genome analysis identified set of unique genes associated with sub-lineages representing plant associated Xanthomonas clade and nosocomial origin Stenotrophomonas. Overall, our study reveals importance to reconcile classical phenotypic data and genomic findings in reconstituting taxonomic status of these four genera.Significance StatementXylella fastidiosa is a devastating pathogen of perennial dicots such as grapes, citrus, coffee, and olives. The pathogen is transmitted by an insect vector to its specific host wherein the infection leads to complete wilting of the plants. The genome of X. fastidiosa is extremely reduced both in terms of size (2Mb) and GC content (50%) when compared with its relatives such as Xanthomonas, Stenotrophomonas, and Pseudoxanthomonas that have higher GC content (65%) and larger genomes (5Mb). In this study, using systematic and in-depth genome-based taxonomic and phylogenetic criteria along with comparative studies, we assert the need of unification of Xanthomonas with its misclassified relatives (Xylella, Stenotrophomonas and Pseudoxanthomonas). Interestingly, Xylella revealed itself as a minor lineage embedded within two major Xanthomonas lineages comprising member species of different hosts.


Sign in / Sign up

Export Citation Format

Share Document