scholarly journals Regional Delivery of Anti-PD-1 Agent for Colorectal Liver Metastases Improves Therapeutic Index and Anti-Tumor Activity

Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 807
Author(s):  
Louis F. Chai ◽  
John C. Hardaway ◽  
Kara R. Heatherton ◽  
Kyle P. O’Connell ◽  
Mikayla C. Lopes ◽  
...  

Metastatic liver tumors have presented challenges with the use of checkpoint inhibitors (CPIs), with only limited success. We hypothesize that regional delivery (RD) of CPIs can improve activity in the liver and minimize systemic exposure, thereby reducing immune-related adverse events (irAE). Using a murine model of colorectal cancer liver metastases (LM), we confirmed high levels of PD-L1 expression on the tumor cells and liver myeloid-derived suppressor cells (L-MDSC). In vivo, we detected improved LM response at 3 mg/kg on PTD7 via portal vein (PV) regional delivery as compared to 3 mg/kg via tail vein (TV) systemic delivery (p = 0.04). The minimal effective dose at PTD7 was 5 mg/kg (p = 0.01) via TV and 0.3 mg/kg (p = 0.02) via PV. We detected 6.7-fold lower circulating CPI antibody levels in the serum using the 0.3 mg/kg PV treatment compared to the 5 mg/kg TV cohort (p < 0.001) without increased liver toxicity. Additionally, 3 mg/kg PV treatment resulted in increased tumor cell apoptotic signaling compared to 5 mg/kg TV (p < 0.05). Therefore, RD of an anti-PD-1 CPI therapy for CRCLM may improve the therapeutic index by reducing the total dose required and limiting the systemic exposure. These advantages could expand CPI indications for liver tumors.

2020 ◽  
Vol 22 (4) ◽  
pp. 451
Author(s):  
Zeno Sparchez ◽  
Tudor Mocan ◽  
Pompilia Radu ◽  
Iuliana Nenu ◽  
Mihai Comsa ◽  
...  

It has been a long time since tumor ablation was first tested in patients with liver cancer, especially hepatocellular carcinoma. Since than it has become a first line treatment modality for hepatocellular carcinoma. Over the years, the indications of thermal ablation have expanded to colorectal cancer liver metastases and intrahepatic cholangiocarcinoma as well. Together with the new indication for ablation, new ablation devices have been developed as well. Among them microwave ablation shows potential in replacing radiofrequency ablation as the preferred method of thermal ablation in liver cancer. The debate whether radiofrequency or microwave ablation should be the preferred method of treatment in patients with liver cancer remains open. The main purpose of this review is to offer some answers to the question: Microwave ablation in liver tumors: a better tool or simply more power? Various clinical scenarios will be analyzed including small, medium, and intermediate size hepatocellular carcinoma, colorectal cancer liver metastases and intrahepatic cholangiocarcinoma. Furthermore, the advantages, limitations, and technical considerations of MWA treatment will be provided also.


2020 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Daehyun Kim ◽  
Seung Soo Lee ◽  
Hyungwon Moon ◽  
So Yeon Park ◽  
Hak Jong Lee

Cancer immunotherapy has revolutionized the way different neoplasms are treated. Among the different variations of cancer immunotherapy, the checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis have been validated and are currently used in the clinics. Nevertheless, these therapeutic antibodies are associated with significant side effects and are known to induce immune-related toxicities. To address these issues, we have developed an immune-microbubble complex (IMC) which not only reduces the toxicities associated with the antibodies but also enhances the therapeutic efficacy when combined with focused ultrasound. The concept of IMCs could be applied to any type of antibody-based treatment regimens to maximize their therapeutic potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karianne Giller Fleten ◽  
J. Johannes Eksteen ◽  
Brynjar Mauseth ◽  
Ketil André Camilio ◽  
Terje Vasskog ◽  
...  

AbstractOncolytic peptides represent a novel, promising cancer treatment strategy with activity in a broad spectrum of cancer entities, including colorectal cancer (CRC). Cancer cells are killed by immunogenic cell death, causing long-lasting anticancer immune responses, a feature of particular interest in non-immunogenic CRC. Oncolytic peptides DTT-205 and DTT-304 were administered by intratumoral injection in subcutaneous tumors established from murine CRC cell lines CT26 and MC38, and complete regression was obtained in the majority of animals. When cured animals were rechallenged by splenic injection of tumor cells, 1/23 animals developed liver metastases, compared to 19/22 naïve animals. Treatment with both peptides was well tolerated, but monitoring post-injection hemodynamic parameters in rats, less extensive changes were observed with DTT-205 than DTT-304, favoring DTT-205 for future drug development. DTT-205 was subsequently shown to have strong in vitro activity in a panel of 33 cancer cell lines. In conclusion, both peptides exerted a strong inhibitory effect in two immunocompetent CRC models and induced a systemic effect preventing development of liver metastases upon splenic rechallenge. If a similar effect could be obtained in humans, these drugs would be of particular interest for combinatory treatment with immune checkpoint inhibitors in metastatic CRC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luuk van Hooren ◽  
Alessandra Vaccaro ◽  
Mohanraj Ramachandran ◽  
Konstantinos Vazaios ◽  
Sylwia Libard ◽  
...  

AbstractGliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 561
Author(s):  
Chibueze D. Nwagwu ◽  
Amanda V. Immidisetti ◽  
Michael Y. Jiang ◽  
Oluwasegun Adeagbo ◽  
David C. Adamson ◽  
...  

Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.


Sign in / Sign up

Export Citation Format

Share Document