scholarly journals A Shake Table Frequency-Time Control Method Based on Inverse Model Identification and Servoactuator Feedback-Linearization

Vibration ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 425-447
Author(s):  
José Ramírez Senent ◽  
Jaime H. García-Palacios ◽  
Iván M. Díaz

Shake tables are one of the most widespread means to perform vibration testing due to their ability to capture structural dynamic behavior. The shake table acceleration control problem represents a challenging task due to the inherent non-linearities associated to hydraulic servoactuators, their low hydraulic resonance frequencies and the high frequency content of the target signals, among other factors. In this work, a new shake table control method is presented. The procedure relies on identifying the Frequency Response Function between the time derivative of pressure force exerted on the actuator’s piston rod and the resultant acceleration at the control point. Then, the Impedance Function is calculated, and the required pressure force time variation is estimated by multiplying the impedance by the target acceleration profile in frequency domain. The pressure force time derivative profile can be directly imposed on an actuator’s piston by means of a feedback linearization scheme, which approximately cancels out the actuator’s non-linearities leaving only those related to structure under test present in the control loop. The previous architecture is completed with a parallel Three Variable Controller to deal with disturbances. The effectiveness of the proposed method is demonstrated via simulations carried over a non-linear model of a one degree of freedom shake table, both in electrical noise free and contaminated scenarios. Numerical experiments results show an accurate tracking of the target acceleration profile and better performance than traditional control approaches, thus confirming the potential of the proposed method for its implementation in actual systems.

Author(s):  
Yan Liu ◽  
Dirk So¨ffker

This paper introduces a robust nonlinear control method combining classical feedback linearization and a high-gain PI-Observer (Proportional-Integral Observer) approach that can be applied to control a nonlinear single-input system with uncertainties or unknown effects. It is known that the lack of robustness of the feedback linearization approach limits its practical applications. The presented approach improves the robustness properties and extends the application area of the feedback linearization control. The approach is developed analytically and fully illustrated. An example which uses input-state linearization and PI-Observer design is given to illustrate the idea and to demonstrate the advantages.


2020 ◽  
Vol 42 (14) ◽  
pp. 2733-2743
Author(s):  
Jiqiang Tang ◽  
Tongkun Wei ◽  
Qichao Lv ◽  
Xu Cui

For a magnetically suspended control moment gyro (MSCMG), which is an ideal attitude actuator for its large outputting control moment and fast response, the moving-gimbal effects due to the coupling between the moving gimbal and high-speeding rotor will make the magnetically suspended rotor (MSR) unstable. To improve control precision, both the dynamic model of MSR and the feedback linearization control are done to decouple tilting motion, and poles of the system are reconfigured to reduce control error. To suppress the varying disturbance moments caused by moving-gimbal effects, an extended state observer (ESO) is originally designed to estimate and compensate them timely and accurately. To improve system robustness, a two-degree freedom internal model control (2-DOF IMC) is researched to suppress model error. Compared with existing proportional integral derivative (PID) control method, simulations done on a single gimbal MSCMG with 200 N.m.s angular momentum indicated that this presented control method with ESO and 2-DOF IMC can suppress the moving-gimbal effects more effectively and make the rotor suspension more stable.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6402
Author(s):  
Jianning Shi ◽  
Chaoying Xia

This paper establishes the state-space model of the cup rotor permanent-magnet doubly fed machine in the synchronous reference frame. The feedback-linearization control method is used to realize the decoupling control of flux and torque. Then, the upper and lower load torque boundaries are solved. Furthermore, to minimize the stator current magnitude of the control machine under a certain torque, the maximum torque per ampere (MTPA) control is derived. Finally, simulation results demonstrate the good decoupling performance of the feedback-linearization control method and the correctness of the load torque boundaries. In addition, the effectiveness and robustness of the proposed control methods are also demonstrated.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2243
Author(s):  
Jianchuan Guo ◽  
Chenhu Yuan ◽  
Xu Zhang ◽  
Fan Chen

This paper presents a novel visual servoing sheme for a miniature pan-tilt intertially stabilized platform (ISP). A fully customized ISP can be mounted on a miniature quadcopter to achieve stationary or moving target detection and tracking. The airborne pan-tilt ISP can effectively isolate a disturbing rotational motion of the carrier, ensuring the stabilization of the optical axis of the camera in order to obtain a clear video image. Meanwhile, the ISP guarantees that the target is always on the optical axis of the camera, so as to achieve the target detection and tracking. The vision-based tracking control design adopts a cascaded control structure based on the mathematical model, which can accurately reflect the dynamic characteristics of the ISP. The inner loop of the proposed controller employs a proportional lag compensator to improve the stability of the optical axis, and the outer loop adopts the feedback linearization-based sliding mode control method to achieve the target tracking. Numerical simulations and laboratory experiments demonstrate that the proposed controller can achieve satisfactory tracking performance.


2020 ◽  
Vol 10 (9) ◽  
pp. 3075
Author(s):  
Muhammad Aseer Khan ◽  
Muhammad Abid ◽  
Nisar Ahmed ◽  
Abdul Wadood ◽  
Herie Park

Effective control of ride quality and handling performance are challenges for active vehicle suspension systems, particularly for off-road applications. The nonlinearities tend to degrade the performance of active suspension systems; these introduce harshness to the ride quality and reduce off-road mobility. Typical control strategies rely on linear models of the suspension dynamics. While these models are convenient, nominally accurate, and controllable due to the abundance of linear control techniques, they neglect the nonlinearities present in real suspension systems. The techniques already implemented and methods used to cope with problem of Half-Car model were studied. Every method and technique had some drawbacks in terms of complexity, cost-effectiveness, and ease of real time implementation. In this paper, an improved control method for Half-Car model was proposed. First, input/output feedback linearization was performed to convert the nonlinear system of Half-Car model into an equivalent linear system. This was followed by a Linear Quadratic Regulator (LQR) controller. This controller had minimized the effects of road disturbances by designing a gain matrix with optimal robustness properties. The proposed control technique was applied in the presence of the deterministic road disturbance. The results were verified using the Matlab/Simulink toolbox.


2018 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Shahan Tutunjian ◽  
Martin Dannemann ◽  
Fabian Fischer ◽  
Oğuzhan Eroğlu ◽  
Niels Modler

It was found that the ultrasonic spot welding may serve as an efficient method to join relative large thin-walled parts made of fiber-reinforced thermoplastics. In this study, a new control method for the ultrasonic spot-welding process was investigated. It was found that, when welding fiber-reinforced thermoplastic laminates without energy directors, overheating and decomposition of the polymer at the weld spot occurred. The occurrence of the overheating took place at unpredictable times during welding. It was observed that the time trace of the consumed power curve by the welder follows a similar pattern as the time trace of the temperature in the weld spot center. Based on this observation, a control system was developed. The time derivative of the welder power was monitored in real time and, as soon as it exceeded a critical value, the ultrasonic vibration amplitude was actively adjusted through a microcontroller. The controlling of the ultrasonic welding process forced the temperature in the weld spot to remain in an adequate range throughout the welding duration for the polymer diffusion to occur. The results of the controlled welding process were evaluated by means of weld temperature measurements, computed tomography scans, and microscopic analysis of the weld spot fracture surfaces.


2019 ◽  
Vol 9 (7) ◽  
pp. 1376
Author(s):  
Peng Zhang ◽  
Yunhua Li

The objective of this paper is to design a pump that can match its delivery pressure to the aircraft load. Axial piston pumps used in airborne hydraulic systems are required to work in a constant pressure mode setting based on the highest pressure required by the aircraft load. However, the time using the highest pressure working mode is very short, which leads to a lot of overflow lose. This study is motivated by this fact. Pressure continuous regulation electrohydraulic proportional axial piston pump is realized by combining a dual-pressure piston pump with electro-hydraulic proportional technology, realizing the match between the delivery pressure of the pump and the aircraft load. The mathematical model is established and its dynamic characteristics are analyzed. The control methods such as a proportional integral derivative (PID) control method, linear quadratic regulator (LQR) based on a feedback linearization method and a backstepping sliding control method are designed for this nonlinear system. It can be seen from the result of simulation experiments that the requirements of pressure control with a pump are reached and the capacity of resisting disturbance of the system is strong.


2018 ◽  
Vol 211 ◽  
pp. 18005
Author(s):  
Marcel Clappier ◽  
Lothar Gaul

Electromagnetic noise in Electrical Machines (EMs) occurs due to vibrations caused by magnetic forces acting onto rotor and stator surface. This is the dominant source for the considered permanent-magnetic excited synchronous machine in this paper. The radiated electromagnetic noise is sequentially calculated by a Finite Element (FE) and Boundary Element (BE) computation. An electromagnetic FE model is created to determine magnetic forces. Structure-borne sound and rotor dynamics are calculated using a structural dynamic FE model for the EM housing and the rotor. In order to predict resonance frequencies and amplitudes as reliable as possible, it is important to know the direction-dependent stiffness of the laminated rotor stacks and mechanical joints as well as their structural damping. Thereby, the properties of the laminated stack can be determined experimentally by a shear and dilatation test. Mechanical joint properties can be modelled by Thin-Layer Elements (TLEs) and the overall damping by the model of constant hysteretic damping. The radiated sound power is determined by a direct BE computation. The influence of dynamic rotor eccentricity on radiated sound power is examined for a run-up of the EM. All FE models are verified by data from experimental modal analysis.


Author(s):  
Weimiao Yang ◽  
Pengpeng Feng ◽  
Jianwu Zhang

Non-linear system control has always been a difficult point for vehicle stabilization. To improve the vehicle handling performance, a comprehensive active-steering control method is proposed and derived. Different from traditional strategy, this new controller is based on a piecewise tyre modelling ideology combined with feedback linearization controlling method. In the linear region of wheel–terrain contact, vehicle dynamic system turns to be a linear system, an optimal control is designed for the sake of rapid response in tracking desired values. In the non-linear region, where the controlling difficulty always lies in, the tyre lateral force is described by a new polynomial formula model, which is simpler than magic formula model and more accurate than linear model. This new tyre modelling ideology ensures the feasibility of feedback linearization method in non-linear system control. To verify the proposed controller, a numerical seven-degrees-of-freedom vehicle model is built and validated by standard input simulation. Then, simulation under limit conditions, including high friction case and low friction case, are conducted and results are presented and discussed. Compared with optimal controller and free-control method, comprehensive controller has a much more desirable applicability in both cases and greatly improves the vehicle handling performance.


Author(s):  
Xiaofei Wang ◽  
Zaojian Zou ◽  
Tieshan Li ◽  
Weilin Luo

The control problem of underactuated surface ships and underwater vehicles has attracted more and more attentions during the last years. Path following control aims at forcing the vehicles to converge and follow a desired path. Path following control of underactuated surface ships or underwater vehicles is an important issue to study nonlinear systems control, and it is also important in the practical implementation such as the guidance and control of marine vehicles. This paper proposes two nonlinear model predictive control algorithms to force an underactuated ship to follow a predefined path. One algorithm is based on state space model, the other is based on analytic model predictive control. In the first algorithm, the state space GPC (Generalized Predictive Control) method is used to design the path-following controller of underactuated ships. The nonlinear path following system of underactuated ships is discretized and re-arranged into state space model. Then states are augmented to get the new state space model with control increment as input. Thus the problem is becoming a typical state space GPC problem. Some characters of GPC such as cost function, receding optimization, prediction horizon and control horizon occur in the design procedure of path-following controller. The control law is derived in the form of control increment. In the second algorithm, an analytic model predictive control algorithm is used to study the path following problem of underactuated ships. In this path-following algorithm, the output-redefinition combined heading angle and cross-track error is introduced. As a result, the original single-input multiple-output (SIMO) system is transformed into an equivalent single-input single-output (SISO) system. For the transformed system, we use the analytic model predictive control method to get path-following control law in the analytical form. The analytic model predictive controller can be regarded as special feedback linearization method optimized by predictive control method. It provides a systematic method to compute control parameters rather than by try-and-error method which is often used in the exact feedback linearization control. Relative to GPC, the analytic model predictive control method provides an analytic optimal solution and decreases the computational burden, and the stability of closed-loop system is guaranteed. The path-following system of underactuated ships is guaranteed to follow and stabilize onto the desired path. Numerical simulations demonstrate the validity of the proposed control laws.


Sign in / Sign up

Export Citation Format

Share Document