scholarly journals Glacier Changes between 1976 and 2015 in the Source Area of the Ayeyarwady (Irrawaddy) River, Myanmar

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1850 ◽  
Author(s):  
Linda Taft ◽  
Laila Kühle

The Ayeyarwady River in Myanmar is one of the largest rivers in Southeast Asia. It is predominantly fed by monsoonal precipitation and, to a lower extent, by meltwater from glaciers located in the Himalaya mountains. Information about the glaciers in its headwater region and glacier changes is scarce. Glaciers, in general, are highly important for the hydrological system and are contributing to river flow, therefore playing a key role in water availability, especially in catchments with (semi-) arid downstream areas as is in parts of Myanmar. This study investigated 130 glaciers in the Ayeyarwady headwaters by analyzing satellite images from Landsat missions between 1976 and 2015. The results of the glacier area and volume change analyses indicate that the glaciers are experiencing unprecedented losses. Over the 39 years, the glaciers lost up to 54.3 ± 7.64% of their area and 60.09 ± 1.56% of their mass and volume. The highest losses occurred in the period 2002–2015, which corresponds to increasing global and local warming. This development will probably have a strong influence on the glaciers’ storage function and will affect the local river runoff in the headwater region.

2010 ◽  
Vol 4 (4) ◽  
pp. 2593-2613 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.


2009 ◽  
Vol 3 (2) ◽  
pp. 205-215 ◽  
Author(s):  
J. Abermann ◽  
A. Lambrecht ◽  
A. Fischer ◽  
M. Kuhn

Abstract. In this study we apply a simple and reliable method to derive recent changes in glacier area and volume by taking advantage of high resolution LIDAR (light detection and ranging) DEMs (digital elevation models) from the year 2006. Together with two existing glacier inventories (1969 and 1997) the new dataset enables us to quantify area and volume changes over the past 37 years at three dates. This has been done for 81 glaciers (116 km2) in the Ötztal Alps which accounts for almost one third of Austria's glacier extent. Glacier area and volume have reduced drastically with significant differences within the individual size classes. Between 1997 and 2006 an overall area loss of 10.5 km2 or 8.2% occurred. Volume has reduced by 1.0 km3 which accounts for a mean thickness change of −8.2 m. The availability of three comparable inventories allows a comprehensive size and altitude dependent analysis of glacier changes but lacks a high temporal resolution. For the comparison of rates of changes between the two different periods (1969 to 1997 with 1997 to 2006) we propose two approaches in this study: a) to estimate mean overall rates of changes (including a period of advance) and b) to extract periods of net-retreat by using additional information (length change and mass balance measurements). Analysis of the resulting acceleration factors reveals that the retreat of volume and mean thickness changes has accelerated significantly more than that of area changes.


2020 ◽  
Vol 66 (259) ◽  
pp. 880-886
Author(s):  
Argha Banerjee

AbstractA volume-area scaling relation is commonly used to estimate glacier volume or its future changes on a global scale. The presence of an insulating supraglacial debris cover alters the mass-balance profile of a glacier, potentially modifying the scaling relation. Here, the nature of scaling relations for extensively debris-covered glaciers is investigated. Theoretical arguments suggest that the volume-area scaling exponent for these glaciers is ~7% smaller than that for clean glaciers. This is consistent with the results from flowline-model simulations of idealised glaciers, and the available data from the Himalaya. The best-fit scale factor for debris-covered Himalayan glaciers is ~60% larger compared to that for the clean ones, implying a significantly larger stored ice volume in a debris-covered glacier compared to a clean one having the same area. These results may help improve scaling-based estimates of glacier volume and future glacier changes in regions where debris-covered glaciers are abundant.


2006 ◽  
Vol 43 ◽  
pp. 187-193 ◽  
Author(s):  
Shiyin Liu ◽  
Donghui Shangguan ◽  
Yongjian Ding ◽  
Haidong Han ◽  
Changwei Xie ◽  
...  

AbstractThe present research focuses on glacier changes in the southeast of the Qinghai–Xizang (Tibetan) Plateau, where most of the temperate glaciers in China are located. Our results show that the 102 measured glaciers in the region have all retreated between 1915 and 1980, with total area and volume decreases of 47.9 km2 and 6.95 km3, respectively. The extrapolated mass loss of all glaciers in the Gangrigabu mountains amounted to 27 km3, 9.8% of the ice mass in 1915. Between 1980 and 2001, glaciers in the region have also experienced a general retreat; however, up to 40% of the glaciers were advancing. Our analysis demonstrates that precipitation in the studied area has increased substantially since the mid-1980s. This precipitation increase is likely to bring about a positive mass balance for glaciers in the region, so that the retreat of retreating glaciers might slow down or even turn into advance. Considering the sensitivity of the temperate glaciers in the region and the uncertainty in climate projections, more attention must be paid to glacier changes in the southeast Tibetan Plateau region.


The Holocene ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 953-965 ◽  
Author(s):  
Tanuj Shukla ◽  
Manish Mehta ◽  
DP Dobhal ◽  
Archna Bohra ◽  
Bhanu Pratap ◽  
...  

We studied a periglacial lake situated in the monsoon-dominated Central Himalaya where an interplay of monsoonal precipitation and glacial fluctuations during the late Holocene is well preserved. A major catastrophe occurred on 16–17 June 2013, with heavy rains causing rupturing of the moraine-dammed Chorabari Lake located in the Mandakini basin, Central Himalaya, and exposed 8-m-thick section of the lacustrine strata. We reconstructed the late-Holocene climatic variability in the region using multi-parametric approach including magnetic, mineralogical and chemical (XRF) properties of sediments, paired with grain size and optically simulated luminescence (OSL) dating. The OSL chronology suggests that the lake was formed by a lateral moraine during the deglaciation phase of Chorabari Glacier between 4.2 and 3.9 ka and thereafter the lake deposited about 8-m-thick sediment sequence in the past 2.3 ka. The climatic reconstruction of the lake broadly represents the late-Holocene glacial chronology of the Central Himalaya coupled with many short-term climatic perturbations recorded at a peri-glacial lake setting. The major climatic phases inferred from the study suggests (1) a cold period between 260 BCE and 270 CE, (2) warmer conditions between 900 and 1260 CE for glacial recession and (3) glacial conditions between ~1370 and 1720 CE when the glacier gained volume probably during the ‘Little Ice Age’ (LIA). We suggest a high glacial sensitivity to climatic variability in the monsoon-dominated region of the Himalaya.


2014 ◽  
Vol 55 (66) ◽  
pp. 61-68 ◽  
Author(s):  
Donghui Shangguan ◽  
Shiyin Liu ◽  
Yongjian Ding ◽  
Lizong Wu ◽  
Wei Deng ◽  
...  

AbstractWe use remote-sensing and GIS technologies to monitor glacier changes in the Koshi River basin, central Himalaya. The results indicate that in 2009 there were 2061 glaciers in this region, with a total area of 3225 ±90.3 km2. This glacier population is divided into 1290 glaciers, with a total area of 1961 ±54.9 km2, on the north side of the Himalaya (NSH), and 771 glaciers, with a total area of 1264 ± 35.4 km2, on the south side of the Himalaya (SSH). From 1976 to 2009, glacier area in the basin decreased by about 19±5.6% (0.59±0.17%a–1). Glacier reduction was slightly faster on SSH (20.3 ±5.6%) than on NSH (18.8±5.6%). The maximum contribution to glacier area loss came from glaciers within the 1-5 km2 area interval, which accounted for 32% of total area loss between 1976 and 2009. The number of glaciers in the Koshi River catchment decreased by 145 between 1976 and 2009. Glacier area on SSH decreased at a rate of 6.2 ±3.2% (0.68 ±0.36% a–1), faster than on NSH, where the rate was 2.5 ±3.2% (0.27±0.36% a–1) during 2000-09. Based on records from Tingri weather station, we infer that temperature increase and precipitation decrease were the main causes of glacier thinning and retreat during the 1976-2000 period. Glacier retreat during the 2000-09 period appears to be controlled by temperature increase, since precipitation increase over this period did not offset ice losses to surface melting.


2013 ◽  
Vol 10 (8) ◽  
pp. 10659-10717 ◽  
Author(s):  
S. N. Lane

Abstract. This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan and Blöschl, 2012), what is the role of those humans who are simultaneously hydrological scientists, bound up within this system? To put it more directly, can we, as socio-hydrologists study the socio-hydrological world in isolation from that world in a way that mirrors the supposed separation between scientists and society? I answer this question, in the negative, from three linked perspectives. The first draws directly upon science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the philosophical critique of the claimed abstraction of scientists and scientific activity from the socio-hydrological world; (b) the way in which hydrological science is embedded in wider societal decision-making; and (c) the recognition that socio-hydrological knowledge is much more distributed than we as (socio-)hydrologists commonly recognise. For the second perspective, I consider predictive modelling as a socio-hydrological practice. I draw upon wider studies of the practice of modelling, coupled to empirical evidence for one element of hydrological modelling, roughness parameterisation, to consider how it is that socio-hydrological modellers come to believe in the predictive models that they use. This will show that if predictive modelling is to be more than analytical, that if it is to effect more sustainable socio-hydrological futures, then we need to rethink the basic tenets of how we practice predictive modelling. These first two perspectives are themselves, in combination, analytical, prone to the criticism that they cause us to degenerate into an "anything goes" relationship with the world around us. Thus, in a third perspective I explicitly challenge this degeneration by setting out a number of practices that might be valuable for doing prediction within a socio-hydrological system. These include: (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming paradigm-bound; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation, in which I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.


2014 ◽  
Vol 18 (3) ◽  
pp. 927-952 ◽  
Author(s):  
S. N. Lane

Abstract. This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because those predictions contain assumptions, the predictions are only correct in so far as those assumptions hold, and for those assumptions to hold, the socio-hydrological system (i.e. the world) has to be shaped so as to include them. Here, I add to the "normal" view that ideally our models should represent the world around us, to argue that for our models (and hence our predictions) to be valid, we have to make the world look like our models. Decisions over how the world is modelled may transform the world as much as they represent the world. Thus, socio-hydrological modelling has to become a socially accountable process such that the world is transformed, through the implications of modelling, in a fair and just manner. This leads into the final section of the paper where I consider how socio-hydrological research may be made more socially accountable, in a way that is both sensitive to the constructivist critique (Sect. 1), but which retains the contribution that hydrologists might make to socio-hydrological studies. This includes (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming locked into our own frames of explanation and prediction; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation. Therein, I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.


Sign in / Sign up

Export Citation Format

Share Document