scholarly journals Assessing Managed Aquifer Recharge Processes under Three Physical Model Concepts

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 107 ◽  
Author(s):  
Thomas Fichtner ◽  
Felix Barquero ◽  
Jana Sallwey ◽  
Catalin Stefan

Physical models such as surface infiltration experiments in the lab and field are an approach to understand processes in the unsaturated soil zone. In the case of mapping processes influencing the operation of real-world managed aquifer recharge schemes they are helpful tools to determine interactions between processes in the unsaturated soil zone, and site-specific as well as operational parameters. However, the multitude of assumptions and scale-related limitations of downscale investigations often lead to over- or underestimations, rendering their results useless when translated to field-like conditions. Various real-world managed aquifer recharge operational scenarios were simulated in three physical models, a 1D-lab column, a rectangular shaped stainless steel 3D-lab infiltration tank and a rectangular shaped 3D-field unit, to understand the impact of the experimental set-up on the assessment of processes and to identify the experimental set-up which is most-suitable to describe these processes. Results indicate that water flow velocity, water saturation and oxygen consumption are often overestimated in 1D-column experiments due to sidewall effects and no existing lateral flow. For precise analysis of infiltration processes in general as well as during operation of managed aquifer recharge, 3D experiments are recommended due to their more realistic representation of flow processes.

Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 9-25 ◽  
Author(s):  
Bharat R. Sharma ◽  
Devaraj de Condappa

The topography of the Ganges basin is highly variable, with the steep mountainous region of the Himalaya upstream and the large fertile plains in eastern India and Bangladesh downstream. The contribution from the glaciers to streamflows is supposed to be significant but there is uncertainty surrounding the impact of climate change on glaciers. An application of the Water Evaluation and Planning model was set up which contained an experimental glaciers module. The model also examined the possible impacts of an increase in temperature. The contribution from glaciated areas is significant (60–75%) in the Upper Ganges but reduces downstream, falling to about 19% at Farakka. Climate change-induced rise in temperature logically increases the quantity of snow and ice that melts in glaciated areas. However, this impact decreases from upstream (+8% to +26% at Tehri dam) to downstream (+1% to +4% at Farakka). Such increases in streamflows may create flood events more frequently, or of higher magnitude, in the upper reaches. Potential strategies to exploit this additional water may include the construction of new dams/reservoir storage and the development of groundwater in the basin through managed aquifer recharge. The riparian states of India, Nepal and Bangladesh could harness this opportunity to alleviate physical water scarcity and improve productivity.


2019 ◽  
Vol 9 (18) ◽  
pp. 3652
Author(s):  
Jana Sallwey ◽  
Felix Barquero ◽  
Thomas Fichtner ◽  
Catalin Stefan

Infiltration experiments in the context of managed aquifer recharge (MAR) are often conducted to assess the processes influencing the operation of full-scale MAR schemes. For this, physical models such as laboratory experiments and, less often, field experiments are used to determine process specifics or operational parameters. Due to several assumptions, scale-related limitations, and differing boundary conditions, the upscaling of results from the physical models is not straightforward. Investigations often lead to over- or underestimations of flow processes that constrain the translation of results to field-like conditions. To understand the restrictions and potential of different physical models for MAR assessment, surface infiltration experiments in different scales and dimensions, which maintained the same operational parameters, were conducted. The results from the different setups were compared against each other regarding the reproduction water flow in the vadose zone and the influence of parameters such as soil type and climate. Results show that mostly qualitative statements can be made, whereas quantitative analysis through laboratory experiments is limited.


2013 ◽  
Vol 7 ◽  
pp. 40-43 ◽  
Author(s):  
M. Azaroual ◽  
M. Pettenati ◽  
P. Ollivier ◽  
K. Besnard ◽  
J. Casanova ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. T155-T166 ◽  
Author(s):  
Vanessa Nenna ◽  
Adam Pidlisecky ◽  
Rosemary Knight

The use of managed aquifer recharge (MAR) to supplement groundwater resources can mitigate the risks to an aquifer in overdraft. However, limited information on subsurface properties and processes that control groundwater flow may lead to low levels of recapture of infiltrated water, reducing the efficacy of MAR operations. We used long 1D electrical resistivity probes to monitor the subsurface response over one diversion season at five locations beneath an operating recharge pond in northern California. The experiment demonstrated the benefits of integrating geophysical and standard hydrologic measurements. The water table response interpreted from time-lapse electrical resistivity images was in good agreement with traditional pore-pressure transducer measurements at coincident locations. Moreover, the electrical resistivity measurements were able to identify vertical variations in water saturation that would not have appeared in pore-pressure data alone. Changes in saturation estimated from electrical resistivity models indicated large hydraulic gradients at early time and suggested the presence of highly permeable conduits and baffles between the surface and the screened interval of recovery wells. The interpreted structure of these conduits and baffles would contribute to the movement of a large amount of infiltrated water beyond the capture zone of recovery wells before pumping begins, accounting in part for the low recovery rates.


2019 ◽  
Vol 25 (6) ◽  
pp. 841-846
Author(s):  
Heonseop Eom ◽  
Sami Flimban ◽  
Anup Gurung ◽  
Heejun Suk ◽  
Yongcheol Kim ◽  
...  

Managed aquifer recharge (MAR), an intentional storage of excess water to an aquifer, is becoming a promising water resource management tool to cope with the worldwide water shortage. Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and overall performance in MAR. The current study investigates the impact of carbon and nitrogen in recharge water on bioclogging in MAR. For this investigation, continuous-flow columns packed with sand grains were operated with influents having 0 (C1), 5 (C2), and 100 mg/L (C3) of glucose with or without introduction of nitrate. Hydraulic conductivity was analyzed to evaluate bioclogging in the systems. In C1 and C2, hydraulic conductivity was not significantly changed overall. However, hydraulic conductivity in C3 was decreased by 28.5% after three weeks of operation, which appears to be attributed to generation of fermentation bacteria. Introduction of nitrogen to C3 led to a further decrease in hydraulic conductivity by 25.7% compared to before it was added, most likely due to stimulation of denitrifying bacteria. These findings indicate that high carbon contents and introduction of additional nitrogen in recharge water cause serious bioclogging in MAR, suggesting the necessity for controlling quality of recharge water.


2018 ◽  
Vol 26 (7) ◽  
pp. 2427-2442 ◽  
Author(s):  
Jana Glass ◽  
Daniela A. Via Rico ◽  
Catalin Stefan ◽  
Tran Thi Viet Nga

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1607-P
Author(s):  
MAYU HAYASHI ◽  
KATSUTARO MORINO ◽  
KAYO HARADA ◽  
MIKI ISHIKAWA ◽  
ITSUKO MIYAZAWA ◽  
...  

Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


2018 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Murisal Murisal

Motif and Impact of Early Marriage in Indarung Ngalau Batu Gadang.Penelitian is motivated by teenagers who married early on. Today, young men and women have a tendency to be less prepared to enter the home life, they are only ready to marry (ready here can be interpreted, maturity in terms of financial, understand what the meaning of marriage according to marriage law) is the bond of inner birth between a man and a woman as husband and wife for the purpose of forming a happy and eternal family (household) based on the Supreme Godhead while they are not ready to set up a home, whereas to build a household requires preparation both physically and spiritually . The purpose of this study to determine the motives underlying adolescents to make early marriage and the impact caused in the household as a result of the marriage.


Sign in / Sign up

Export Citation Format

Share Document