scholarly journals Experimental Analysis of the Influence of Aeration in the Energy Dissipation of Supercritical Channel Flows

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 576 ◽  
Author(s):  
Juan Rebollo ◽  
David López ◽  
Luis Garrote ◽  
Tamara Ramos ◽  
Rubén Díaz ◽  
...  

Energy dissipation structures play an important role in flood risk management. Many variables need to be considered for the design of these structures. Aeration has been one of the more studied phenomena over the last years, due to its influence in the performance of hydraulic structures. The purpose of the work presented in this article is to experimentally characterize the effects of aeration on boundary friction in supercritical and fully turbulent flows. The physical model used to analyze the aeration effects consists of a spillway chute 6.5 m high and a stilling basin of 10 m length and 2 m high. A pump and compressor supply the water-air mixture and are controlled at the entrance by valves and flowmeters. The ensuing channel is monitored to determine the velocity profile and air concentration of the flow into the stilling basin. The average values of both variables and Manning’s coefficient along the channel are used to determine the relation between air concentration and energy dissipation by friction. A velocity increase with greater air entrainment has been found in all scenarios since friction is the main energy dissipation mechanism in open channels flow. Finally, an equation is proposed to characterize this evolution based on the results obtained.

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Juan José Rebollo ◽  
David López ◽  
Tamara Ramos ◽  
Luis Garrote

Adequate design of energy dissipation structures is essential for effective flood control. The effect of aeration on water flow has been one of most analyzed phenomena during the last decades due to its influence on hydraulic structures. The purpose of this study is to characterize the influence of aeration on the boundary friction in supercritical and fully turbulent flows. Our analysis is based on a physical model to reproduce these phenomena and consists of a spillway chute 6.5 m high, followed by a 10 m length and 2 m high still basin. Water and air are supplied by a pump and compressors, and is controlled at the entrance by several valves and flowmeters, while the channel is monitored to measure the velocity profile and air concentration in the intake flow to the still basin. Velocity results included in this paper show the relation between air concentration and energy dissipation by friction. To determine this relation, Manning roughness numbers have been obtained for all scenarios. It has been found that greater air entrainment implies acceleration of the flow, since friction is the main energy dissipation mechanism in open channels flow.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1758
Author(s):  
Juan Macián-Pérez ◽  
Francisco Vallés-Morán ◽  
Santiago Sánchez-Gómez ◽  
Marco De-Rossi-Estrada ◽  
Rafael García-Bartual

The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant differences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.


Author(s):  
Weichen Ren ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Shangtuo Qian

Abstract Aiming to achieve energy dissipation and prevention of cavitation erosion, a kind of dropshaft in urban drainage systems, called helical-step dropshaft, is introduced in this paper. It dissipates flow energy by means of step geometry and prevent cavitation erosion through air entrainment. To verify its availability, the hydraulic characteristics of the helical-step dropshaft were experimentally investigated, including the flow regimes, the efficiency of energy dissipation, characteristics of air entrainment and pressure distribution. The results demonstrate that, even for a large discharge, flow can be discharged smoothly and steadily, and a high energy-dissipation rate of over 87% is achieved. There are three distinct flow regimes observed in the dropshaft, namely nappe flow, mixed flow and skimming flow. Moreover, there is no less than 1.6% air concentration and a reasonable pressure distribution on the step surface. This study provides an attractive alternative for the design of drop structures.


2020 ◽  
Vol 47 (5) ◽  
pp. 523-533
Author(s):  
Zhao Zhou ◽  
Junxing Wang ◽  
David Z. Zhu

Flaring gate piers (FGPs) have been used to increase energy dissipation in stilling basins downstream of spillways. For projects with a low water head and large unit discharge together with a deep tailwater level, energy dissipation inside a conventional stilling basin is usually insufficient. This paper proposes a new partial flaring gate pier (partial FGP) scheme to intensify the energy dissipation inside the stilling basin. The results for the no FGP scheme, the conventional FGP scheme, and the partial FGP scheme were compared using a physical model study and numerical simulations. It was found that the partial FGP scheme (the alternation of flaring and no flaring gate piers in chambers) can contain the submerged hydraulic jump and high-speed water jet in the upstream region of the stilling basin. Thus, the water jet from the FGP chamber was forced to laterally diffuse, thereby intensifying the shear friction and turbulent kinetic energy and forming a vertical vortex from the bottom to the surface. Compared with the other two schemes, the flow pattern in the partial FGP scheme was improved significantly with much deeper air entrainment depth inside the stilling basin and much lower turbulent kinetic energy in the outgoing flow. The mean velocity of the outgoing flow also decreased by more than 20%. The common problems of secondary hydraulic jump outside the stilling basin were eliminated.


2011 ◽  
Vol 90-93 ◽  
pp. 2427-2430
Author(s):  
Elham Bakhshian ◽  
Abdorreza Kabiri-Samani

Abrupt changes of the channel bed elevation in hydraulic systems, e.g. in chutes, drops and steeped spillways, results to create a sever flow kinematic energy. This excess energy, can tend to different phenomena, such as tremendous forces, scouring and degrading the channel bed, resulting to destruction of the downstream hydraulic structures. The most important source to cause this phenomena is the the existence of sequent vertical drops along the the channel. In this study, the energy dissipation efficiency was increased by installing a new type of dissipaters namely netting dissipater on the crest of the vertical drops based on model experimtation. Also, the features of hydraulic jump, created in the stilling basin, were compared to those of a simple vertical drop. By assembling the above mentioned structure to the top of the stilling basin, the jet flow direction is changed, the degree of turbulence is increased and as the results, the kinematic energy loss increases and the length of the hydraulic jump decreses. The enhanced efficiency of the proposed structure was quantified based on the achieved experimental data.


2021 ◽  
Vol 906 (1) ◽  
pp. 012117
Author(s):  
Martin Hladík ◽  
Martin Králík ◽  
Jan Ouhel ◽  
Vojtěch Sýs ◽  
Milan Zukal

Abstract An energy dissipation on hydraulic structures is a scientifically highly examined field of study. Gained knowledge can be used to ensure the safety of the hydraulic structures and the channels which is crucial during floods. Above that, those structures are also part of the critical infrastructure therefore their function is necessary. It is assumed that in the Czech Republic the precipitation distribution is changing due to climate change thus episodes of extreme floods may be observed more often. The paper brings brand new knowledge on the kinetic energy dissipation on the chute and in the stilling basin and its impact on the riverbed scour hole development. The presented research was conducted in the Water Management Experimental Centre of Czech Technical University in Prague, Faculty of Civil Engineering. The research aimed to examine the energy dissipation mechanism on different geometric modifications of the construction of spillway chute and stilling basin and its impact on the process of scour hole development. These various types of dams’ flood safety equipment were examined in the hydraulic laboratory: an elementary form of the spillway without any stilling basin; the elementary form of the spillway and the stilling basin (crest and spillway channel had the same width); the chute width was reduced, and the stilling basin had the full width; steps were added on the narrowed chute and the and stilling basin had the full width; only the spillway crest was reduced to a half-width; only the stilling basin width was smoothly reduced; the chute’s width was smoothly reduced along the chute and the stilling basin had full width; the chute’s width was smoothly reduced along the chute and the stilling basin had the width reduced to a half. The flow, water levels, scour hole and deposit dimensions were measured. Then the amount of energy dissipated was computed. The correlation and connection between energy dissipation and scour hole development was investigated. These outcomes can be used as a recommendation of an appropriate construction design to provide better flood safety of the hydraulic structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingying Lu ◽  
Xiaolong Cheng ◽  
Zhenhua Wang ◽  
Ran Li ◽  
Jingjie Feng ◽  
...  

AbstractTotal dissolved gas (TDG) supersaturation, which occurs during dam spilling, may result in fish bubble disease and mortality. Many studies have been conducted to identify the factors pertaining to TDG generation, such as the spilling discharge and tailwater depth. Additionally, the energy dissipation efficiency should be considered due to its effect on the air entrainment, which influences the TDG generation process. According to the TDG field observations of 49 cases at Dagangshan and Xiluodu hydropower stations, the TDG was positively related to the energy dissipation efficiency, tailwater depth and discharge per unit width. A correlation between the generated TDG level and these factors was established. The empirical equations proposed by the USACE were calibrated, and the TDG level estimation performance was compared with the established correlation for 25 spillage cases at seven other dams. Among the considered cases, the standard error of the TDG estimation considering the energy dissipation efficiency was 5.7%, and those for the correlations obtained using the USACE equations were 13.0% and 10.0%. The findings indicated that the energy dissipation efficiency considerably influenced the TDG level, and its consideration helped enhance the precision of the TDG estimation. Finally, the generality of this approach and future work were discussed.


1987 ◽  
Vol 3 (1) ◽  
pp. 52-56 ◽  
Author(s):  
C. E. Rice ◽  
F. W. Blaisdell

2019 ◽  
Vol 8 (4) ◽  
pp. 2109-2112

Hydraulic jump type II stilling basin is generally preferred as an energy dissipator for ogee spillway but it is uneconomical due to longer structure. On the other hand, roller bucket uses relatively shorter structure over a sloping apron or horizontal stilling basin. In this study, an attempt has been made to evaluate the performance of an ogee profile stepped spillway in combination with solid roller bucket and stilling basin type II for energy dissipation. Laboratory experiments are performed on a physical working model of ogee profile stepped spillway at discharge ranging from 0.0032 to 0.0069 m3 /s for a head of 1.5m, 4m & 7m and the results compared for energy dissipation (non-dimensional parameter (y c / h) = 0.69). The model results show that stepped spillway model without v-notch achieves 92.40 % energy dissipation. Thus this model is found to be more suitable to acquire the ideal condition of sequent depth and tail water depth in stilling basin for all the discharges.


Sign in / Sign up

Export Citation Format

Share Document