scholarly journals Assessment of Flood Extremes Using Downscaled CMIP5 High-Resolution Ensemble Projections of Near-Term Climate for the Upper Thu Bon Catchment in Vietnam

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 634 ◽  
Author(s):  
Do Nam ◽  
Tran Hoa ◽  
Phan Duong ◽  
Duong Thuan ◽  
Dang Mai

Exploring potential floods is both essential and critical to making informed decisions for adaptation options at a river basin scale. The present study investigates changes in flood extremes in the future using downscaled CMIP5 (Coupled Model Intercomparison Project—Phase 5) high-resolution ensemble projections of near-term climate for the Upper Thu Bon catchment in Vietnam. Model bias correction techniques are utilized to improve the daily rainfall simulated by the multi-model climate experiments. The corrected rainfall is then used to drive a calibrated supper-tank model for runoff simulations. The flood extremes are analyzed based on the Gumbel extreme value distribution and simulation of design hydrograph methods. Results show that the former method indicates almost no changes in the flood extremes in the future compared to the baseline climate. However, the later method explores increases (approximately 20%) in the peaks of very extreme events in the future climate, especially, the flood peak of a 50-year return period tends to exceed the flood peak of a 100-year return period of the baseline climate. Meanwhile, the peaks of shorter return period floods (e.g., 10-year) are projected with a very slight change. Model physical parameterization schemes and spatial resolution seem to cause larger uncertainties; while different model runs show less sensitivity to the future projections.

2021 ◽  
Vol 331 ◽  
pp. 08006
Author(s):  
Arniza Fitri ◽  
Muhammad Shubhi Nurul Hadie ◽  
Adelia Agustina ◽  
Dian Pratiwi ◽  
Susarman ◽  
...  

Cimadur river basin is one of the most important catchment areas in Lebak District, Banten Province. For the past few years, the catchment has experienced floods during the rainy season. The big issue of flooding has been recorded recently in December 2019 which has caused damage and negative impacts to the local people and surrounding community. This study aims to analyze the possibility of flood peak discharges in the catchment area of the Cimadur river. The flood discharges are calculated for 2, 5, 10, 25, 50, and 100 years return period based on the daily rainfall data from the year 2011 to 2020. The rainfall and land use data are obtained from PT Saeba Consultant. In this study, the hydrological analyses are including 1) analyses of average annual rainfall using the Thiessen method; 2) analyses of rainfall distribution and estimation of design rainfall by considering three methods involving: Log-Normal, Log Pearson Type III, and Gumbel Type 1; and 3) analyses of flood discharges by adopting Nakayasu Synthetic Hydrograph Unit (SHU). The rainfall distribution analyses show that the Log Pearson Type III provided the best fit. Based on the flood peak discharges analyses, the results show that the flood discharges for the 5, 10, 25, and 50 years return period in the Cimadur river basin are 470.71 m3/s, 560.16 m3/s, 698 m3/s, and 820.4 m3/s, respectively.


2013 ◽  
Vol 7 (1) ◽  
pp. 103-144 ◽  
Author(s):  
E. Collier ◽  
T. Mölg ◽  
F. Maussion ◽  
D. Scherer ◽  
C. Mayer ◽  
...  

Abstract. The traditional approach to simulations of alpine glacier mass balance (MB) has been one-way, or offline, thus precluding feedbacks from changing glacier surface conditions on the atmospheric forcing. In addition, alpine glaciers have been only simply, if at all, represented in atmospheric models to date. Here, we extend a recently presented, novel technique for simulating glacier–atmosphere interactions without the need for statistical downscaling, through the use of a coupled high-resolution mesoscale atmospheric and physically-based mass balance modelling system that includes glacier MB and energy balance feedbacks to the atmosphere. We compare the model results over the Karakoram region of the northwestern Himalaya with both remote sensing data and in situ glaciological and meteorological measurements for the ablation season of 2004. We find that interactive coupling has a localized but appreciable impact on the near-surface meteorological forcing data and that incorporation of MB processes improves the simulation of variables such as land surface temperature and snow albedo. Furthermore, including feedbacks from the MB model has a non-negligible effect on simulated mass balance, reducing modelled ablation, on average, by 0.1 m w.e. (−6.0%) to a total of −1.5 m w.e. between 25 June–31 August 2004. The interactively coupled model shows promise as a new, multi-scale tool for explicitly resolving atmospheric-MB processes of mountain glaciers at the basin scale.


2013 ◽  
Vol 7 (3) ◽  
pp. 779-795 ◽  
Author(s):  
E. Collier ◽  
T. Mölg ◽  
F. Maussion ◽  
D. Scherer ◽  
C. Mayer ◽  
...  

Abstract. The traditional approach to simulations of alpine glacier mass balance (MB) has been one-way, or offline, thus precluding feedbacks from changing glacier surface conditions on the atmospheric forcing. In addition, alpine glaciers have been only simply, if at all, represented in atmospheric models to date. Here, we extend a recently presented, novel technique for simulating glacier–atmosphere interactions without the need for statistical downscaling, through the use of a coupled high-resolution mesoscale atmospheric and physically-based climatic mass balance (CMB) modelling system that includes glacier CMB feedbacks to the atmosphere. We compare the model results over the Karakoram region of the northwestern Himalaya with remote sensing data for the ablation season of 2004 as well as with in situ glaciological and meteorological measurements from the Baltoro glacier. We find that interactive coupling has a localized but appreciable impact on the near-surface meteorological forcing data and that incorporation of CMB processes improves the simulation of variables such as land surface temperature and snow albedo. Furthermore, including feedbacks from the glacier model has a non-negligible effect on simulated CMB, reducing modelled ablation, on average, by 0.1 m w.e. (−6.0%) to a total of −1.5 m w.e. between 25 June–31 August 2004. The interactively coupled model shows promise as a new, multi-scale tool for explicitly resolving atmospheric-CMB processes of mountain glaciers at the basin scale.


2020 ◽  
Vol 163 (1) ◽  
pp. 267-296
Author(s):  
Rory G. J. Fitzpatrick ◽  
Douglas J. Parker ◽  
John H. Marsham ◽  
David P. Rowell ◽  
Lawrence S. Jackson ◽  
...  

AbstractCurrent-climate precipitation and temperature extremes have been identified by decision makers in West Africa as among the more impactful weather events causing lasting socioeconomic damage. In this article, we use a plausible future-climate scenario (RCP8.5) for the end of the twenty-first century to explore the relative commonness of such extremes under global warming. The analysis presented considers what a typical day in the future climate will feel like relative to current extrema. Across much of West Africa, we see that the typical future-climate day has maximum and minimum temperatures greater than 99.5% of currently experienced values. This finding exists for most months but is particularly pronounced during the Boreal spring and summer. The typical future precipitation event has a daily rainfall rate greater than 95% of current storms. These findings exist in both a future scenario model run with and without parameterised convection, and for many of the Coupled Model Inter-comparison Project version 5 ensemble members. Additionally, agronomic monsoon onset is projected to occur later and have greater inter-annual variability in the future. Our findings suggest far more extreme conditions in future climate over West Africa. The projected changes in temperature and precipitation could have serious socioeconomic implications, stressing the need for effective mitigation given the potential lack of adaptation pathways available to decision makers.


2016 ◽  
Vol 121 (17) ◽  
pp. 9943-9963 ◽  
Author(s):  
Moetasim Ashfaq ◽  
Deeksha Rastogi ◽  
Rui Mei ◽  
Shih-Chieh Kao ◽  
Sudershan Gangrade ◽  
...  

Author(s):  
Ahmed Fadel Jassim Dawood

The Arab region is of great importance as an important part of the Middle East for both international and regional powers.This importance has placed it and its peoples in the suffering of international and regional interventions and has placed it in a state of permanent instability as it witnessed international and regional competition that increased significantly after the US intervention in Iraq in 2003. Accordingly, the research aims to shed light on the strategic directions of the global and regional powers by knowing their objectives separately, such as American, Russian, Turkish, Israeli and Iranian. The course aims at determining the future of this region in terms of political stability and lack thereof. Therefore, the hypothesis of the research comes from [that the different strategic visions and political and economic interests between the international and regional powers have exacerbated the conflicts between those forces and their alliances within the Arab region.. The third deals with the future of the Arab region in light of the conflict of these strategies. Accordingly, the research reached a number of conclusions confirming the continuation of international and regional competition within the Arab region, as well as the continuation of the state of conflict, tension, instability and chaos in the near term, as a result of the inability of Arab countries to overcome their political differences on the one hand and also their inability to advance their Arab reality. In the face of external challenges on the other.


Author(s):  
Stephen Gerald Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu ◽  
James Edwards ◽  
Nan Rosenbloom ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 3887-3892 ◽  
Author(s):  
Huang He Gu ◽  
Zhong Bo Yu ◽  
Ji Gan Wang

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.


2020 ◽  
Author(s):  
María Teresa Contreras Vargas ◽  
Joannes Westerink ◽  
Damrongsak Wirasaet ◽  
William Pringle ◽  
Edward Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document