scholarly journals Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1042 ◽  
Author(s):  
Ilan Stavi

Wildfires are prevalent in grasslands and shrublands. The objective of this study is to provide land managers with a general overview, by assessing the main impacts of wildfire, including those on plant communities (e.g., secondary succession and species invasion), soil characteristics (e.g., water repellency (hydrophobicity), aggregation and structure stability, and contents of organic carbon and nutrients), and surface processes (e.g., ash deposition, ground surface clogging, water runoff, soil erosion, hillslope debris flow, and dry ravel). Additionally, the study discusses the effects of livestock grazing on the functioning of post-fire grasslands and shrublands. Although mesic regions are mentioned, this review focuses on drylands. The comparatively low-to-moderate fuel loads that characterize grasslands and shrublands generate wildfires of relatively moderate intensity, resulting in moderate burn severity. Yet, it seems that because of decreased soil aggregate stability following burning, the hoof action of livestock that access burnt lands shortly after the fire increases the shearing and detachment of mineral material from the ground surface; this increases soil erodibility, with the possible risk of accelerated land degradation. The review ends with an assessment of general implications for environmental sustainability and health, and provides recommendations on wildfire control in rangelands, and on restoration of burnt lands.

Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Radka Kodešová ◽  
Marcela Rohošková ◽  
Anna Žigová

AbstractSoil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.


Author(s):  
Surachet Aramrak ◽  
Natthapol Chittamart ◽  
Worachart Wisawapipat ◽  
Wutthida Rattanapichai ◽  
Mutchima Phun-Iam ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Li ◽  
Ningning Yin ◽  
Ruiwei Xu ◽  
Liping Wang ◽  
Zhen Zhang ◽  
...  

AbstractWe constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3–7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant–complex substrate–microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


2014 ◽  
Vol 78 (4) ◽  
pp. 1168-1176 ◽  
Author(s):  
Baptiste Algayer ◽  
Yves Le Bissonnais ◽  
Frédéric Darboux

2021 ◽  
Vol 11 (2) ◽  
pp. 750
Author(s):  
Roberta Pastorelli ◽  
Giuseppe Valboa ◽  
Alessandra Lagomarsino ◽  
Arturo Fabiani ◽  
Stefania Simoncini ◽  
...  

Digestate from biogas production can be recycled to the soil as conditioner/fertilizer improving the environmental sustainability of the energy supply chain. In a three-year maize-triticale rotation, we investigated the short-term effects of digestate on soil physical, chemical, and microbiological properties and evaluated its effectiveness in complementing the mineral fertilizers. Digestate soil treatments consisted of combined applications of the whole digestate and its mechanically separated solid fraction. Digestate increased soil total organic C, total N and K contents. Soil bulk density was not affected by treatments, while aggregate stability showed a transient improvement due to digestate treatments. A decrement of the transmission pores proportion and an increment of fissures was observed in digestate treated soils. Soil microbial community was only transiently affected by digestate treatments and no soil contamination from Clostridiaceae-related bacteria were observed. Digestate can significantly impair seed germination when applied at low dilution ratios. Crop yield under digestate treatment was similar to ordinary mineral-based fertilization. Overall, our experiment proved that the agronomic recycling of digestate from biogas production maintained a fair crop yield and soil quality. Digestate was confirmed as a valid resource for sustainable management of soil fertility under energy-crop farming, by combining a good attitude as a fertilizer with the ability to compensate for soil organic C loss.


Sign in / Sign up

Export Citation Format

Share Document