scholarly journals Preparation of Biomass Activated Carbon Supported Nanoscale Zero-Valent Iron (Nzvi) and Its Application in Decolorization of Methyl Orange from Aqueous Solution

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1671 ◽  
Author(s):  
Bo Zhang ◽  
Daping Wang

The nanoscale zero-valent iron (nZVI) has great potential to degrade organic polluted wastewater. In this study, the nZVI particles were obtained by the pulse electrodeposition and were loaded on the biomass activated carbon (BC) for synthesizing the composite material of BC-nZVI. The composite material was characterized by SEM-EDS and XRD and was also used for the decolorization of methyl orange (MO) test. The results showed that the 97.94% removal percentage demonstrated its promise in the remediation of dye wastewater for 60 min. The rate of MO matched well with the pseudo-second-order model, and the rate-limiting step may be a chemical sorption between the MO and BC-nZVI. The removal percentage of MO can be effectively improved with higher temperature, larger BC-nZVI dosage, and lower initial concentration of MO at the pH of 7 condition.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 89 ◽  
Author(s):  
Bo Zhang ◽  
Bo-Hong Zhu ◽  
Xiong Wang ◽  
Song-Bai You

The application potential of nanoscale zero valent iron (nZVI) in wastewater treatment is huge and has attracted a lot of attention. In this study, the composite material BC-nZVI was prepared by emulsion of nZVI and biomass-activated carbon (BC) under the mechanical agitation condition, and was characterized by SEM-EDX, XRD, XPS, and FTIR. The decontamination abilities of BC-nZVI were tested by the removal of total chromium (Cr) from electroplating wastewater. The results showed that the removal efficiencies of Cr in the electroplating wastewater by nZVI particles can be effectively improved when supported with BC, but cannot be improved in its storage capacity. The chemical adsorption process between the Cr and BC-nZVI is the main rate-limiting step in the removal of total Cr from wastewater, and multiple parameters such as dosage, pH, and initial concentration of Cr was found to affect the rate.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 452-461
Author(s):  
Yi Han ◽  
Xian Zhou ◽  
Li Lei ◽  
Huiqun Sun ◽  
Zhiyuan Niu ◽  
...  

In order to improve the utilization of nanoscale zero-valent iron (nZVI) in activating persulfate (PS), a composite material of nZVI/CSW with nZVI supported on calcium sulfate whiskers (CSWs) was synthesized in this study.


2020 ◽  
Vol 82 (4) ◽  
pp. 732-746
Author(s):  
Jian Liu ◽  
Zhengji Yi ◽  
Ziling Ou ◽  
Tianhui Yang

Abstract The application of activated carbon fiber supported nanoscale zero-valent iron (ACF-nZVI) in the continuous removal of Cr(VI) and methyl orange (MO) from aqueous solution was studied in depth. The breakthrough curves of Cr(VI) in a fixed bed with ACF-nZVI were measured, and compared with those in the fixed bed with ACF. The catalytic wet peroxide oxidation (CWPO) process for MO was also carried out using ACF-nZVI after reacting with Cr(VI) in the same fixed bed. The results showed that the breakthrough time of ACF-nZVI was significantly longer than that of ACF. Higher pH values were unfavorable for the Cr(VI) removal. The breakthrough time increased with decreasing inlet Cr(VI) concentration or increasing bed height. The Yoon–Nelson and bed depth service time (BDST) models were found to show good agreement with the experimental data. The Cr(VI) removal capacity when using ACF-nZVI was two times higher than that when using ACF. Under the optimal empty bed contact time of 1.256 min, the fixed bed displayed high MO conversion (99.2%) and chemical oxygen demand removal ratio (55.7%) with low Fe leaching concentration (<5 mg/L) after continuous running for 240 min. After three cycles, the conversion of MO remained largely unchanged.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 81-92 ◽  
Author(s):  
S. Tomić ◽  
N. Rajić ◽  
J. Hrenović ◽  
D. Povrenović

AbstractNatural zeolitic tuff from Brus (Serbia) consisting mostly of clinoptilolite (about 90%) has been investigated for the reduction of the Mg concentration in spring water. The sorption capacity of the zeolite is relatively low (about 2.5 mg Mg g-1for the initial concentration of 100 mg Mg dm-3). The zeolitic tuff removes Mg from water solutions by ion exchange, which has been demonstrated by energy dispersive X-ray analysis (EDS). The extent of ion exchange was influenced by the pH and the initial Mg concentration. Kinetic studies revealed that Lagergen's pseudo-second order model was followed. Intra-particle diffusion of Mg2+influenced the ion exchange, but it is not the rate-limiting step. Rather than having to dispose of the Mg-loaded (waste) zeolite, a possible application was tested. Addition to a wastewater with a low concentration of Mg showed that it could successfully make up for the lack of Mg micronutrient and, accordingly, enabled the growth of phosphate-accumulating bacteriaA. Junii, increasing the amount of phosphate removed from the wastewater.


Author(s):  
Yanchang Zhang ◽  
Lin Zhao ◽  
Yongkui Yang ◽  
Peizhe Sun

Biochar (BC)-supported nanoscale zero-valent iron (nZVI-BC) was investigated as a heterogeneous Fenton-like activator to degrade the antibiotic ornidazole (ONZ). The characterization of nZVI-BC indicated that BC could enhance the adsorption of ONZ and reduce the aggregation of nZVI. Thus, nZVI-BC had a higher removal efficiency (80.1%) than nZVI and BC. The effects of parameters such as the nZVI/BC mass ratio, pH, H2O2 concentration, nZVI-BC dose, and temperature were systematically investigated, and the removal of ONZ followed a pseudo-second-order kinetic model. Finally, possible pathways of ONZ in the oxidation process were proposed. The removal mechanism included the adsorption of ONZ onto the surface of nZVI-BC, the generation of •OH by the reaction of nZVI with H2O2, and the oxidation of ONZ. Recycling experiments indicated that the nZVI-BC/H2O2 system is a promising alternative for the treatment of wastewater containing ONZ.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sheng-Hsun Chaung ◽  
Pei-Fung Wu ◽  
Yu-Lin Kao ◽  
Weile Yan ◽  
Hsing-Lung Lien

The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI) was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II) and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.


2011 ◽  
Vol 399-401 ◽  
pp. 1386-1391
Author(s):  
Yuan Yuan Wang ◽  
Qian Huang ◽  
Qi Ming Xian ◽  
Cheng Sun

Nanoscale zero-valent iron (NZVI) particles were supported onto activated carbon fiber (ACF) by impregnating ACF with ferrous sulfate followed by chemical reduction with NaBH4. A new kind of material ACF/NZVI with approximate 9.64% (wt%) iron was prepared, the structure of the prepared ACF/NZVI was characterized bySEM, XRD and BET. The average NZVI particles with the size of 8.1nm were well dispersed on the ACF. The activity of the prepared ACF/NZVI was evaluated for removing chloroform in water. When 5g/L of ACF/NZVI was added into water with 10 mg/L chloroform, more than 90% of chloroform in water was removed in 48h at pH7.0 and (25±2) ºС. The dechlorination and adsorption of chloroform on ACF/NZVI took place at the same time. The total Chloroform removal by ACF/NZVI was 53.1% after 48h. Consequently, ACF/NZVI exhibits the potential of simultaneous adsorption and dechlorination for chlorinated organic contaminants in water.


Sign in / Sign up

Export Citation Format

Share Document