scholarly journals Discussion on the Characteristics of Seismic Signals Due to Riverbank Landslides from Laboratory Tests

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Zheng-Yi Feng ◽  
Chia-Ming Hsu ◽  
Shi-Hao Chen

Floods and erosion often cause landslides of riverbanks and induce problems such as river blockage, shift of river center, or flooding from rising riverbeds. Instrumentation and monitoring are often used to explore landslide and erosion behavior of riverbanks. Therefore, this study identified landslide types and characteristics of their seismic signals due to toe erosion of riverbanks through riverbank models with various instrumentation sensors in a laboratory flume. To induce landslides in the riverbank model, a test was set up for water to flow through the toe of the riverbank model. Seismic signals of each landslide event were measured during the tests with accelerometers. Nonpolarized electrodes were installed for observing the self-potential changes during the test. Water content and pore water pressure gauges were installed in the riverbank model. In addition, water levels were recorded. The Hilbert–Huang transform method was used to analyze the characteristics of seismic signals caused by water flow and riverbank landslides. Time points, landslide frequency distributions, and the characteristics of several landslide events in the riverbank models were estimated using the seismic signals. This study identified three types of landslides: single, intermittent, and successive. Moreover, changes in self-potential signals, pore water pressure, and water content during the tests were examined and were found to correspond to the landslide process of the riverbank model.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen

By embedding water content sensors and pore water pressure sensors inside the red clay slope on-site in Guiyang, Guizhou, shear tests were performed on soil samples at different depths of the slope under different weather. The changes of water content, pore water pressure, and shear strength index of the slope inside the slope under the influence of the atmosphere were tracked and tested, and the failure characteristics and evolution of the red clay slope were analyzed. It is believed that the depth of influence of the atmosphere on red clay slopes is about 0.7 m, rainfall is the most direct climatic factor leading to the instability of red clay slopes, and the evaporation effect is an important prerequisite for the catastrophe of red clay slopes. The cohesion and internal friction angle of the slope soil have a good binary quadratic function relationship with the water content and density. The water content and density can be used to calculate the cohesion and internal friction angle. Failure characteristics of red clay slopes: the overall instability failure is less, mainly surface failure represented by gullies and weathering and spalling, and then gradually evolved into shallow instability failure represented by collapse and slump. The damage evolution law is as follows: splash corrosion and surface corrosion stage⟶ fracture development stage⟶ gully formation stage⟶ gully development through stage⟶ local collapse stage⟶ slope foot collapse stage.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


1995 ◽  
Vol 32 (5) ◽  
pp. 749-766 ◽  
Author(s):  
Harianto Rahardjo ◽  
Delwyn G. Fredlund

An experimental program was designed to study the behavior of unsaturated soils during undrained loading and consolidation. A Ko cylinder was designed and built for the testing program. Simultaneous measurements of pore-air and pore-water pressures could be made throughout a soil specimen using this Ko cylinder. Four types of tests were performed on a silty sand. These are (1) undrained loading tests where both the air and water are not allowed to drain, (2) constant water content tests where only the water phase is not allowed to drain, (3) consolidation tests where both the air and water phases are allowed to drain, and (4) increasing matric suction tests. Undrained loading tests or constant water content loading tests were conducted for measuring the pore pressure parameters for the unsaturated soil. Drained tests consisting of either consolidation tests or increasing matric suction tests were conducted to study the pore pressure distribution and volume change behavior throughout an unsaturated soil during a transient process. The experimental pore pressure parameters obtained from the undrained loadings and constant water content leadings agreed reasonably well with theory. The pore-air pressure was found to dissipate instantaneously when the air phase is continuous. The pore-water pressure dissipation during the consolidation test was found to be faster than the pore-water pressure decrease during the increasing matric suction test. The differing rates of dissipation were attributed to the different coefficients of water volume change for each of the tests. The water volume changes during the consolidation test were considerably smaller than the water volume changes during the increasing matric suction tests for the same increment of pressure change. Key words : consolidation, Ko loading, matric suction, pore-air pressures, pore-water pressures, unsaturated soils


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Joon-Young Park ◽  
Young-Suk Song

A combined analysis involving a laboratory test and numerical modeling was performed to investigate the hydraulic processes leading to slope failure during rainfall. Through a laboratory landslide test in which artificial rainfall was applied to a homogeneous sandy slope, the timing and configurations of multiple slides were identified. In addition, volumetric water content was measured in real time through the use of monitoring sensors. The measured volumetric water content data were then used to validate the relevance of the numerical modeling results. The validated numerical modeling of the laboratory-scale slope failures provided insight into the hydraulic conditions that trigger landslides. According to the numerical modeling results, the miniaturized slope in the laboratory test was saturated in a manner so that the wetting front initially progresses downward and then the accumulated rainwater at the toe of the slope creates a water table that advances toward the crest. Furthermore, each of the five sequential failures that occurred during this experiment created slip surfaces where the pore-water pressure had achieved full saturation and an excessive pore-water pressure state. The findings of this study are expected to help understand the hydraulic prerequisites of landslide phenomena.


2013 ◽  
Vol 4 (2) ◽  
pp. 24-27
Author(s):  
Suhaimi D.N.A.A ◽  
Selaman O. S.

Landslides not only include loss of human lives and properties, but also effect the transportation direct and indirectly. This study focus on the correlation between rainfalls and pore water pressure which lead to landslide event. For this study, the scope of study focuses at Bau, Sarawak whereby lot of landslide event occurs along the road in 2009. Triaxial test is conduct in lab to measure pore water pressure which modeling landslide occurs on 11th January 2009 at KM 72.00 Bau-Lundu Road. From the laboratory test, it can be seen that continuous and heavy rainfall will increase the pore water pressure in soil. When the pore water pressure increase from 809.94 kPa to 829.25 kPa, the strength of the soil will be decrease due to the water content inside the soil. Other than that, correlation between pore water pressure and rainfall can be seen as an exponential relationship by plotting agraph using Microsoft Excel. It indicates that continuous rainfall within 11 days will increase the changes in pore water pressure and causes the soil to be in fully saturation condition. After 27 hours, the soil will be in failure which leads to landslide.


2012 ◽  
Vol 204-208 ◽  
pp. 609-613
Author(s):  
Xing Gao Li ◽  
Chao Jie Duan

It is of great significance to estimate the range of saturated ground around leakage pipelines when tunneling near the pipelines. The range of saturated ground can be determined from the distributions of the water content and pore-water pressure in ground around the leakage pipelines. The leakage pipeline being modeled as an injection well, a series of unsteady seepage numerical analysis is performed to understand the effects of the internal water pressure of pipelines on the range of saturated ground surrounding the pipelines, and computation results show the exponential relationship between them. In the unsteady seepage analysis, the hydraulic conductivity function and the volumetric water content function must be determined beforehand to get reasonable results of the range of saturated ground.


Author(s):  
Justine Mollaert ◽  
Abbass Tavallali

An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of the breakwater. To include the wave actions in the slope stability analysis a simplified method is used. For the slope stability analysis, a specific piezometric line is determined. This piezometric line consists of a wave profile and the profile of wave run-up. The slope stability analysis are performed with GEO-SLOPE/W 2007. For the geotechnical design of the breakwater load cases of extreme and normal waves combined with, respectively, extreme and normal water levels are analysed. All the load cases which included the wave actions result in lower stability safety factors than the load cases with only still water levels. Therefore the wave actions are the determining load case for the geotechnical stability of the breakwater and it should be studied in detail.


Sign in / Sign up

Export Citation Format

Share Document