scholarly journals Technical and Agronomical Assessment of the Use of Desalinated Seawater for Coastal Irrigation in an Insular Context

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 272 ◽  
Author(s):  
Adrián Monterrey-Viña ◽  
Ana Musicki-Savic ◽  
Francisco J. Díaz-Peña ◽  
Baltasar Peñate-Suárez

The growing need for alternative water resources for irrigation has led to advanced technological developments, which are addressing some of the challenges that our planet is facing regarding the water supply. The Canary Islands Archipelago (Spain) is a singular territory with several years of desalination experience while using desalinated seawater (DSW) for agricultural purposes. The current paper will address the conducted research of one of the case studies done into the Horizon 2020 project MAGIC, with the aim of analyzing the use of DSW for crop production in the Southeast of Gran Canaria Island. A methodology of surveying farmers in the area has been put in practice, as well as an assessment of potential soil degradation risks that are related to DSW irrigation (with fifteen years of DSW data). Additionally, local good practices to improve the DSW quality for irrigation are discussed. This study demonstrates an excellent endorsement of the surveyed farmers in the studied area regarding the use of DSW for irrigation: the strategy of combining this type of water with other water resources, such as groundwater and/or reclaimed water is very frequent and it can guarantee water and food security in the island’s territory.

2018 ◽  
Vol 8 (2) ◽  
pp. 153-168 ◽  
Author(s):  
Teresa Navarro

Abstract This article offers an evaluation of the reuse of reclaimed water and desalination in Spain and aims to provide an overview of the state of the art and Spanish legal framework as far as non-conventional resources are concerned. The fight against the scarcity of water resources in this country, especially in the southeast, has made the production of new alternative water resources a clear priority and has turned the nation into a leader in water reuse and seawater desalination. The assessment presented can be used to help build a more general framework, like the European one, and shed light on other comparative legal experiences.


2017 ◽  
Vol 8 (3) ◽  
pp. 308-330 ◽  
Author(s):  
Zhongfan Zhu ◽  
Aihua Li ◽  
Hongrui Wang

Abstract Shandong is a typical region in northern China that is experiencing a serious shortage of water resources. To tackle the water resources shortage, Shandong is striving to develop alternative water resources, in addition to efficiently utilizing regular water resources, of which, the utilization of reclaimed water plays a major role. However, the successful implementation of the reclaimed water projects heavily depends on public perception and a positive public attitude toward reclaimed water. This study examines public perception of water resources and public attitude toward reclaimed water in Shandong through a questionnaire survey. The results indicate that the public lacks a general understanding of water resources in Shandong. The public positively accepts using reclaimed water for all 12 purposes examined. However, their receptivity of some of the purposes is relatively weak, especially with respect to domestic potable water. Graphical analysis results indicate that older people and people with higher educational levels are more willing to accept reclaimed water. Finally, this study recommends a group of people as the a priori target to improve public receptivity. The study could also provide a valuable reference for other regions of China and developing countries facing similar advancements in the development of reclaimed water.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2218
Author(s):  
María. J. López-Serrano ◽  
Juan F. Velasco-Muñoz ◽  
José A. Aznar-Sánchez ◽  
Isabel M. Román-Sánchez

In a global context where agriculture is the major consumer of water, there is a pressing need to look for alternative water resources. In light of there being a lack of studies that compare the use of diverse water alternatives in different crops, the overall objective of this research is to evaluate the impact generated by the use of tertiary water from an economic and financial perspective and compare it with groundwater and desalinated water. To reach this objective, a detailed study of the cost structure of greenhouse investment has been developed. Furthermore, the most traditional indicators for investment profitability have been calculated for the three different water alternatives: tertiary water, groundwater and desalinated water. The cost analyses demonstrate the relative short reach that the price of water has in an area of greenhouse agriculture exploitation, which provides a margin of increasing water costs while still allowing for economic profit. Taking into account the three water resources considered, evidence shows that the use of tertiary water is not only financially and economically viable but is also the best alternative water resource above desalinated water in terms of profitability and sustainability.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 37-43 ◽  
Author(s):  
John M. Anderson

Australia is a relatively dry continent with an average runoff of 50 mm per year. The use of water resources in some river basins is approaching the limits of sustainability. Some adverse environmental impacts have been observed resulting from water diversions and from both reclaimed water and stormwater discharges. The paper describes current water recycling initiatives in Australia. These include: beneficial reuse of reclaimed water for urban, residential, industrial and agricultural purposes; recycling of greywater and stormwater; advanced treatment using membrane technology; and water efficient urban design. Some possible water recycling scenarios for Australia in the 21st century are examined. The implications of these scenarios are discussed.


Author(s):  
Violeta Cabello ◽  
David Romero ◽  
Ana Musicki ◽  
Ângela Guimarães Pereira ◽  
Baltasar Peñate

AbstractThe literature on the water–energy–food nexus has repeatedly signaled the need for transdisciplinary approaches capable of weaving the plurality of knowledge bodies involved in the governance of different resources. To fill this gap, Quantitative Story-Telling (QST) has been proposed as a science for adaptive governance approach that aims at fostering pluralistic and reflexive research processes to overcome narrow framings of water, energy, and food policies as independent domains. Yet, there are few practical applications of QST and most run on a pan-European scale. In this paper, we apply the theory of QST through a practical case study regarding non-conventional water sources as an innovation for water and agricultural governance in the Canary Islands. We present the methods mixed to mobilize different types of knowledge and analyze interconnections between water, energy, and food supply. First, we map and interview relevant knowledge holders to elicit narratives about the current and future roles of alternative water resources in the arid Canarian context. Second, we run a quantitative diagnosis of nexus interconnections related to the use of these resources for irrigation. This analysis provides feedback to the narratives in terms of constraints and uncertainties that might hamper the expectations posed on this innovation. Thirdly, the mixed analysis is used as fuel for discussion in participatory narrative assessment workshops. Our experimental QST process succeeded in co-creating new knowledge regarding the water–energy–food nexus while addressing some relational and epistemological uncertainties in the development of alternative water resources. Yet, the extent to which mainstream socio-technical imaginaries surrounding this innovation were transformed was rather limited. We conclude that the potential of QST within sustainability place-based research resides on its capacity to: (a) bridge different sources of knowledge, including local knowledge; (b) combine both qualitative and quantitative information regarding the sustainable use of local resources, and (c) co-create narratives on desirable and viable socio-technical pathways. Open questions remain as to how to effectively mobilize radically diverse knowledge systems in complex analytical exercises where everyone feels safe to participate.


2021 ◽  
pp. 127371
Author(s):  
Xinchun Cao ◽  
Wen Zeng ◽  
Mengyang Wu ◽  
Tingyu Li ◽  
Sheng Chen ◽  
...  

1996 ◽  
Vol 33 (10-11) ◽  
pp. 59-70 ◽  
Author(s):  
Richard A. Mills ◽  
Takashi Asano

Stimulated by droughts and inability to construct new freshwater projects, water suppliers in California, U.S.A. have taken a heightened interest in water reclamation in the last decade. Since 1980 the California State Water Resources Control Board has approved financial assistance to local water supply agencies to design and construct water reclamation facilities. Nineteen of these are now operating. There is an opportunity to assess how well projects are performing in relation to their planned objectives, in particular, deliveries of reclaimed water to users. Based on reports on many of these projects, it is found that two-thirds of the projects are delivering 75 percent or less of the expected amounts of water. Data are provided on project performance. A discussion is provided of the problems encountered on many of the projects that account for these deficiencies in yields and have caused other problems in implementation.


2014 ◽  
Vol 4 ◽  
Author(s):  
Ildefons Pla

Increased human influences on soils frequently result in widespread land and soil degradation. The processes of soil and water degradation are closely linked, as unfavourable changes in the hydrological processes affect soil water regimes. In the last 15-20 years there has been increased interest in human-induced climate change, associated with increased atmospheric concentrations of greenhouse gases. Most of the present and future problems of land and soil degradation, water supply and natural disasters are mainly attributed to these climate changes. At the same time, and probably related to it, there has been a change in the focus of research on soil and water conservation. From the late 1960s there was an increasing interest in stimulating studies related to soil and water conservation. This was a great change from the previous emphasis on more static studies of the characteristics of the soil resource, mainly for soil classification and mapping, and for land evaluation related to agricultural and other uses. This situation was due to the increasing evidence of the global problems of land, soil and water degradation, and their effects on food production and the environment. Particular attention was paid to the processes of soil and water degradation in relation to their use and management for agricultural purposes. These efforts led to the development of models and evaluation systems mainly using empirical approaches. Later studies demonstrated the limitations of the generalized universal use of these empirical approaches. Concurrently there was an increase in related organizations, conventions, congresses and conferences associated with the renewed interest on soil and water conservation. A global assessment of human-induced soil degradation (GLASOD) demonstrated the paucity, difficult accessibility and poor quality of basic information. This information, however, is essential for adequate planning and effective application of practices to prevent soil and water degradation. The most recent conventions and programs at international and regional levels are generally based on re-interpretations, and a different processing method or representation of old information using “new” terminology. In other cases, new information has been mostly generated through indirect or remote sensing deductions, usually without adequate ground-truthing. The decreasing public or private support for more integrated interdisciplinary studies and the compulsion to quickly publish papers has resulted in a very specialized and isolated consideration of different aspects related to the degradation of soil functions. This frequently results in over-simplifications, failures and even contradictions in the proposed strategies to control soil degradation. Currently we have reached quasi-stagnation in soil conservation research and a new series of soil conservation terms (soil quality, desertification, tillage erosion) and clichés (“C sequestration”, “no-tillage”) have been introduced. These are derived from different interests, but generally they are very empirical approaches without a strong scientific basis. However, they attract increased attention from organizations setting policies and providing funds for research in soil and water conservation, and as a consequence many research activities in the last 20 years have been concentrated in such topics. Regretfully, these approaches have very limited accuracy and are insufficient for developing adequate policies for land use and management. Climate, soil and socio-economic conditions differ greatly from one location to another and are changing continuously. There cannot therefore be simple universal prescriptions regarding practices of sustainable soil management for crop production and environmental protection or for mitigation of the greenhouse effect by “C sequestration” in soils. The adequate selection of those sustainable practices must be based on research with a broader vision of soil conservation, where all the system components and their interactions are considered and understood with a far-sighted approach, to ensure that short term gains in one aspect or location do not induce long-term losses in other aspects or elsewhere. Research needs to be directed to better the understanding of the processes and reactions in soils related to chemical recycling and water balance over a range of spatial and temporal scales, with the common objective of improving crop production and environmental protection. Lasting solutions will only be found if adequately trained researchers in soil science and hydrology, who recognize the complexity of the problems, develop appropriate strategies.


2017 ◽  
Vol 9 (2) ◽  
pp. 974-982
Author(s):  
Jagroop Kaur ◽  
Harsimrat K. Bons

Mulching plays an important role in production of agricultural and horticultural crops in the current scenario of declining water table, soil degradation and climate change. The main objectives of mulching are to prevent loss of water by evaporation, prevention of soil erosion, weed control, to reduce fertilizer leaching, to promote soil productivity, to enhance yield and quality of field and fruit crops. So, mulching is useful to save our underground water resource, soil and environment for sustainable crop production. In this review paper, the literature clearly shows pronounced effects of mulching on soil health by improving the soil structure, soil fertility, biological activities, avoid soil degradation in addition to moisture conservation, regulating temperature, encouraging change in favourable micro-climate, check weed growth and ultimately increasing the productivity, quality, profitability and sustainability of crops and cropping systems irrespective of the system/situation.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


Sign in / Sign up

Export Citation Format

Share Document