scholarly journals Interaction Analysis of Urban Blue-Green Space and Built-Up Area Based on Coupling Model—A Case Study of Wuhan Central City

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2185 ◽  
Author(s):  
Jing Wu ◽  
Shen Yang ◽  
Xu Zhang

Urban “blue-green” space is the basic element of urban natural ecological space. The rapid urbanization process has a significant impact on the pattern of urban blue-green space and seriously threatens the urban ecological environment. It is of great significance for urban ecological protection and sustainable development to study the change in characteristics of blue and green space during urban expansion. In this paper, a comprehensive method of remote sensing image, landscape pattern analysis, sector analysis, and coupling analysis is applied to analyze the spatio-temporal evolution characteristics and coordinated development level of the blue-green space and built-up area in central Wuhan from 1987 to 2018. The results showed that the land use and landscape pattern in the central city of Wuhan underwent a drastic change process, and the dominant change was the occupation of blue-green space by urban built-up areas, which led to the increase of landscape fragmentation and the decrease of heterogeneity. Urban green space is gradually marginalized and concentrated in local areas. The blue space has an obvious blocking effect on the expansion of the built-up area, and its spatial pattern tends to be stable gradually. In addition, the coupling degree between urban blue-green space and urban built area presents an inverted U-shape, and the coordinated development level among the three has entered a stage of moderate imbalance. It is urgent to strengthen the protection of blue-green space, curb the disorderly expansion of cities, and improve the quality of urban development.

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 359
Author(s):  
Zhouqiao Ren ◽  
Jianhua He ◽  
Qiaobing Yue

Landscape connectivity is important for all organisms as it directly affects population dynamics. Yet, rapid urbanization has caused serious landscape fragmentation, which is the primary contributor of species extinctions worldwide. Previous studies have mostly used spatial snap-shots to evaluate the impact of urban expansion on landscape connectivity. However, the interactions among habitats over time in dynamic landscapes have been largely ignored. Here, we demonstrated that overlooking temporal connectivity can lead to the overestimation of the impact of urban expansion. How much greater the overestimation is depends on the amount of net habitat loss. Moreover, we showed that landscape connectivity may have a delayed response to urban expansion. Our analysis shifts the way to understand the ecological consequences of urban expansion. Our framework can guide sustainable urban development and can be inspiring to conservation practices under other contexts (e.g., climate change).


2018 ◽  
Vol 10 (8) ◽  
pp. 2656 ◽  
Author(s):  
Zhiming Li ◽  
Zhengxi Fan ◽  
Shiguang Shen

Urban green space (UGS) provides critical ecosystem services and alleviates environmental problems caused by rapid urbanization. The Analytic Hierarchy Process (AHP) method is recognized as a traditional technique to identify the weight of the UGS suitability evaluation. We reveal the limitations of the AHP method for its subjectivity and uncertainty. Then, we introduce the AHP and coefficient of variation (AHP-CV) combined weight method to better evaluate the suitability of UGS. Based on the principle of minimum information entropy, the AHP-CV combined weight method takes advantage of both the AHP and CV methods, thus keeping a good balance between subjectivity and objectivity. We used the green space system planning of Fuping County in China as a case study. A new evaluation index system was established using 4 aspects. Our results show that high-suitability areas are mainly distributed around the northern mountainous regions, 2 important rivers and the outer areas of the central city. By comparing the UGS suitability evaluation results obtained by the AHP, CV, and AHP-CV combined weight methods, we found that the AHP-CV method was optimal. Therefore, the AHP-CV combined weight method will not only enrich spatial Multi-Criteria Decision-Making techniques but also have a wide application in the related fields of land-use planning.


2021 ◽  
Vol 13 (2) ◽  
pp. 316
Author(s):  
Darshana Athukorala ◽  
Ronald C. Estoque ◽  
Yuji Murayama ◽  
Bunkei Matsushita

Urban wetland ecosystems (UWEs) play important social and ecological roles but are often adversely affected by urban landscape transformations. Spatio-temporal analyses to gain insights into the trajectories of landscape changes in these ecosystems are needed for better landscape planning towards sustainable UWEs. In this study, we examined the impacts of urbanization on the Muthurajawela Marsh and Negombo Lagoon (MMNL), an important UWE in Sri Lanka that provides valuable ecosystem services. We used remote sensing data to detect changes in the land use/cover (LUC) of the MMNL over a two-decade period (1997–2017) and spatial metrics to characterize changes in landscape composition and configuration. The results revealed that the spatial and socio-economic elements of rapid urbanization of the MMNL had been the main driver of transformation of its natural environment over the past 20 years. This is indicated by a substantial expansion of settlements (+68%) and a considerable decrease of marshland and mangrove cover (−41% and −21%, respectively). A statistical analysis revealed a significant relationship between the change in population density and the loss of wetland due to settlement expansion at the Grama Niladhari division level (n = 99) (where wetland includes marshland, mangrove, and water) (1997–2007: R2 = 0.435, p = 0.000; 2007–2017: R2 = 0.343, p = 0.000). The findings also revealed that most of the observed LUC changes occurred in areas close to roads and growth nodes (viz. Negombo, Ja-Ela, Wattala, and Katana), which resulted in both landscape fragmentation and infill urban expansion. We conclude that, in order to ensure the sustainability of the MMNL, there is an urgent need for forward-looking landscape and urban planning to promote environmentally conscious urban development in the area which is a highly valuable UWE.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 608
Author(s):  
Yang Chen ◽  
Wenze Yue ◽  
Xue Liu ◽  
Linlin Zhang ◽  
Ye’an Chen

There is growing concern about the consequences of future urban expansion on carbon storage as our planet experiences rapid urbanization. While an increasing body of literature was focused on quantifying the carbon storage impact of future urban expansion across the globe, rare attempts were made from the comparative perspective on the same scale, particularly in Central Asia. In this study, Central Asian capitals, namely Ashkhabad, Bishkek, Dushanbe, Nur Sultan, and Tashkent, were used as cases. According to the potential impacts of BRI (Belt and Road Initiative) on urban expansion, baseline development scenario (BDS), cropland protection scenario (CPS), and ecological protection scenario (EPS) were defined. We then simulated the carbon storage impacts of urban expansion from 2019 to 2029 by using Google Earth Engine, the Future Land Use Simulation model, and the Integrated Valuation of Environmental Services and Tradeoffs model. We further explored the drivers for carbon storage impacts of future urban expansion in five capitals. The results reveal that Nur Sultan will experience carbon storage growth from 2019 to 2029 under all scenarios, while Ashkhabad, Bishkek, Dushanbe, and Tashkent will show a decreasing tendency. EPS and CPS will preserve the most carbon storage for Nur Sultan and the other four cities, respectively. The negative impact of future urban expansion on carbon storage will be evident in Ashkhabad, Bishkek, Dushanbe, and Tashkent, which will be relatively inapparent in Nur Sultan. The potential drivers for carbon storage consequences of future urban expansion include agricultural development in Bishkek, Dushanbe, and Tashkent, desert city development in Ashkhabad, and prioritized development of the central city and green development in Nur Sultan. We suggest that future urban development strategies for five capitals should be on the basis of differentiated characteristics and drivers for the carbon storage impacts of future urban expansion.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhang Min ◽  
Wang Xuejie ◽  
Liu Yun

Considering that the development of urbanization cannot be separated from the application of landscape pattern evolution, in order to improve the development level of ecocity, a modeling analysis of ecological urban landscape pattern evolution based on multisource remote sensing data is proposed. Taking ecotype city as the research object, the remote sensing images of ecological urban landscape pattern are screened by using multisource remote sensing data and nonremote sensing data as the basic data. CA-Markov model is constructed and the evolution of ecological urban landscape pattern is analyzed. The experimental results show that, from 2005 to 2020, the development level of urbanization process is higher and higher and the area of building land patches is increasing, which reduces the fragmentation of building land patches. However, the landscape of cultivated land and green space is less and less, and the distribution of the patches also causes uneven phenomenon, which leads to the gradual decline of ecological urban landscape diversity. In the ecological urban landscape pattern, the degree of fragmentation and diversity of urban landscape is reduced due to the high connection and coverage of the construction land.


Author(s):  
Jing Wu ◽  
Shen Yang ◽  
Xu Zhang

Lake reclamation for urban construction has caused serious damage to lakes in cities undergoing rapid urbanization. This process affects urban ecological environment and leads to inconsistent urban expansion, population surge, and uneven distribution of urban lakes. This study measured the fairness of urban lakes’ distribution and explored the spatial matching relationship between service supply and user group demand. The interpretation and analysis of Wuhan’s remote sensing images, population, administrative area, traffic network, and other data in 2018 were used as the basis. Specifically, the spatial distribution pattern and fairness of lakes’ distribution in Wuhan urban development zone were investigated. This study establishes a geographic weighted regression (GWR) model of land cover types and population data based on a spatialization method of population data based on land use, and uses population spatial data and network accessibility analysis results to evaluate lake service levels in the study area. Macroscopically, the correlation analysis of sequence variables and Gini coefficient analysis method are used to measure the fairness of the Wuhan lake distribution problem and equilibrium degree, and the location entropy analysis is used to quantitatively analyze the fairness of lakes and Wuhan streets from the perspective of supply and demand location entropy. Levels improve the accuracy of the research. Results showed that (1) the area covered by lakes in Wuhan urban development zone is 1007.96 km2 within 60-min of walking, accounting for 30.6% of the total area of the study area. This area can house 5,050,275 people, accounting for 60.8% of Wuhan’s total population. (2) The lakes in the central city area are less fair than the lakes outside the Third Ring Road. (3) The service level of North Lake is the highest among all the lakes in the study area, and that of Hou Lake is the lowest. (4) The spatial layout of the fairness of the lakes’ distribution is roughly distributed in circles. The fairness level collapses toward the city center, indicating that the closer to the city center, the lower the fairness level.


2020 ◽  
Vol 12 (22) ◽  
pp. 9394
Author(s):  
Hongzan Jiao ◽  
Chengcong Li ◽  
Yang Yu ◽  
Zhenghong Peng

This study examines the relationship between equity of public green space and urban expansion/sprawl under high-speed urbanization. Equity of urban public green space indicates the degree to which urban public green spaces are distributed spatially in an equal way, with regard to the spatial variation of residents’ “need” for green space. In emerging economies such as China, especially in developing or underdeveloped cities such as Wuhan, central China, rapid urban growth challenges the capacity of the state to provide infrastructure and services for its urbanites equally. In order to research the relationship between industrial development and green space equity under the background of rapid urbanization, the use of quantitative methods to more accurately measure the degree of spatial inequality is essential. In this study, the accessibility of urban public green space in Wuhan is examined based on the two-step floating catchment area method (2SFCA) method at multilevel radius; the urban public green space accessibility of Wuhan in 2013 and 2016 are acquired, and the link between changes in accessibility of urban public green spaces and urban expansion in Wuhan is discussed. It is found that industrial development takes precedence over green space. With its vigorous development, industrial land attracts increasing population, resulting in the drastic decline of the service capacity of green spaces, which is not conducive to the long-term development of the city.


2021 ◽  
Vol 13 (17) ◽  
pp. 3415
Author(s):  
Haipeng Ye ◽  
Zehong Li ◽  
Ninghui Zhang ◽  
Xuejing Leng ◽  
Dan Meng ◽  
...  

Deterioration of the urban thermal environment, especially in megacities with intensive populations and high densities of impervious surfaces, is a global issue resulting from rapid urbanization. The effects of landscape patterns on the urban thermal environment within a single area or single period have been well documented. Few studies, however, have explored whether the effects can be adapted to various cities at different urbanization stages. This paper investigated the variations of these effects in the five largest and highly urbanized megacities of China from 1990 to 2020 using various geospatial approaches, including concentric buffer analysis, correlation analysis, and hierarchical ridge regression models. The results indicated that the effects of landscape patterns on the urban thermal environment were greatly variable at different urbanization stages. Although landscape composition was more important than landscape configuration in determining the urban thermal environment, the standard coefficients of composition metrics continuously decreased from 1990 to 2020. However, configuration metrics, such as patch density, edge density, and shape complexity, could affect the land surface temperature (LST) to a larger extent at the highly urbanized stage. The urbanization process could also affect the cooling effect of urban green space. At the initial stage of rapid urban expansion in approximately 2000, urban green space explained the most variation in LST, with a value as high as 10%. To maximize the cooling effect, the spatial arrangement of urban green space should be highlighted in the region that was 10–15 km from the city center, where the mean LST experienced a significant decline. These results may provide deeper insights into improving the urban thermal environment by targeted strategies in optimizing landscape patterns for areas at different urbanization stages.


2010 ◽  
Vol 11 (4) ◽  
pp. 428-435 ◽  
Author(s):  
Wenhui KUANG ◽  
Quanqin SHAO ◽  
Jiyuan LIU ◽  
Chaoyang SUN

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.


Sign in / Sign up

Export Citation Format

Share Document