scholarly journals Cost Effectiveness of Ecosystem-Based Nutrient Targets—Findings from a Numerical Model for the Baltic Sea

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2679
Author(s):  
Ing-Marie Gren ◽  
Wondmagegn Tirkaso

An ecosystem-based management of a large sea can give heterogeneous nutrient load targets for different parts of the sea. Cost effective solutions to heterogeneous nutrient reductions targets based on ecological conditions are compared with the same overall nutrient reductions to the Baltic Sea. To this end, a numerical programming model is used, which includes eight different nutrient abatement measures (fertilizer and livestock reduction, cultivation of catch crops, reduced airborne nitrogen emissions, improved cleaning at sewage treatment plants, construction of wetlands and buffer strips, and mussel farming) in 21 catchments of the Baltic Sea. The results indicate that the cost for the international agreement on maximum load targets to different marine basins amounts to 5.3 billion euro. This is more than twice as large as the cost for the same total nutrient load targets to the Baltic Sea without specific targets for the marine basins. However, the resulting nutrient loads to the different marine basins deviate from the basin targets where the loads are lower for some basins but can exceed that for one basin, Baltic Proper, by approximately 22 per cent. Whether or not the ecological costs and benefits from deviations in basin targets under the Baltic Sea targets exceed the excess abatement cost of 2.9 billion euro for achieving the marine basin targets remains to be verified.

Author(s):  
H.E. Markus Meier ◽  
Sofia Saraiva

In this article, the concepts and background of regional climate modeling of the future Baltic Sea are summarized and state-of-the-art projections, climate change impact studies, and challenges are discussed. The focus is on projected oceanographic changes in future climate. However, as these changes may have a significant impact on biogeochemical cycling, nutrient load scenario simulations in future climates are briefly discussed as well. The Baltic Sea is special compared to other coastal seas as it is a tideless, semi-enclosed sea with large freshwater and nutrient supply from a partly heavily populated catchment area and a long response time of about 30 years, and as it is, in the early 21st century, warming faster than any other coastal sea in the world. Hence, policymakers request the development of nutrient load abatement strategies in future climate. For this purpose, large ensembles of coupled climate–environmental scenario simulations based upon high-resolution circulation models were developed to estimate changes in water temperature, salinity, sea-ice cover, sea level, oxygen, nutrient, and phytoplankton concentrations, and water transparency, together with uncertainty ranges. Uncertainties in scenario simulations of the Baltic Sea are considerable. Sources of uncertainties are global and regional climate model biases, natural variability, and unknown greenhouse gas emission and nutrient load scenarios. Unknown early 21st-century and future bioavailable nutrient loads from land and atmosphere and the experimental setup of the dynamical downscaling technique are perhaps the largest sources of uncertainties for marine biogeochemistry projections. The high uncertainties might potentially be reducible through investments in new multi-model ensemble simulations that are built on better experimental setups, improved models, and more plausible nutrient loads. The development of community models for the Baltic Sea region with improved performance and common coordinated experiments of scenario simulations is recommended.


2021 ◽  
Vol 13 (7) ◽  
pp. 3872
Author(s):  
Julia Tanzer ◽  
Ralf Hermann ◽  
Ludwig Hermann

The Baltic Sea is considered the marine water body most severely affected by eutrophication within Europe. Due to its limited water exchange nutrients have a particularly long residence time in the sea. While several studies have analysed the costs of reducing current nutrient emissions, the costs for remediating legacy nutrient loads of past emissions remain unknown. Although the Baltic Sea is a comparatively well-monitored region, current data and knowledge is insufficient to provide a sound quantification of legacy nutrient loads and much less their abatement costs. A first rough estimation of agricultural legacy nutrient loads yields an accumulation of 0.5–4.0 Mt N and 0.3–1.2 Mt P in the Baltic Sea and 0.4–0.5 Mt P in agricultural soils within the catchment. The costs for removing or immobilising this amount of nutrients via deep water oxygenation, mussel farming and soil gypsum amendment are in the range of few tens to over 100 billion €. These preliminary results are meant as a basis for future studies and show that while requiring serious commitment to funding and implementation, remediating agricultural legacy loads is not infeasible and may even provide economic benefits to local communities in the long run.


2009 ◽  
Vol 18 (3-4) ◽  
pp. 440-459 ◽  
Author(s):  
K. HYYTIÄINEN ◽  
H. AHTIAINEN ◽  
J. HEIKKILÄ

This study introduces a prototype model for evaluating measures to abate agricultural nutrients in the Baltic Sea from a Finnish national perspective. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of the study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters. The model is made flexible for further improvements in all of its ecological and economic components. The results of a sensitivity analysis suggest that investments in reducing the nutrient load from arable land in Finland would become profitable only if the neighboring countries in the northern Baltic committed themselves to similar reductions. Environmental investments for improving water quality yield the highest returns for the Bothnian Bay and the Gulf of Finland, with smaller returns for the Bothnian Sea. Somewhat surprisingly, in the Bothnian Bay the abatement activities become profitable from the national viewpoint, because the riverine loads from Finland represent a high proportion of the total nutrient loads. In the Gulf of Finland, this proportion is low, but the size of the coastal population benefiting from improved water quality is high.;


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1325-1336 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Mohamed Jabloun ◽  
Jens Christian Refsgaard ◽  
...  

Abstract The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.


AMBIO ◽  
2020 ◽  
Author(s):  
Mikołaj Piniewski ◽  
Sirkka Tattari ◽  
Jari Koskiaho ◽  
Olle Olsson ◽  
Faruk Djodjic ◽  
...  

Abstract Riverine nutrient loads are among the major causes of eutrophication of the Baltic Sea. This study applied the Soil & Water Assessment Tool (SWAT) in three catchments flowing to the Baltic Sea, namely Vantaanjoki (Finland), Fyrisån (Sweden), and Słupia (Poland), to simulate the effectiveness of nutrient control measures included in the EU’s Water Framework Directive River Basin Management Plans (RBMPs). Moreover, we identified similar, coastal, middle-sized catchments to which conclusions from this study could be applicable. The first modelling scenario based on extrapolation of the existing trends affected the modelled nutrient loads by less than 5%. In the second scenario, measures included in RBMPs showed variable effectiveness, ranging from negligible for Słupia to 28% total P load reduction in Vantaanjoki. Adding spatially targeted measures to RBMPs (third scenario) would considerably improve their effectiveness in all three catchments for both total N and P, suggesting a need to adopt targeting more widely in the Baltic Sea countries.


2020 ◽  
Author(s):  
Markus Meier ◽  
Christian Dieterich ◽  
Matthias Gröger

<p>In an ensemble of regional scenarios for the Baltic Sea we analyzed the sources of uncertainty in climate indices and environmental quality indicators. The ensemble is based on 32 regionalized scenarios where four different external drivers have been varied. Climate is represented by four different Earth System Models (ESMs). Uncertain future greenhouse gas emissions are represented by two different Representative Concentration Pathways (RCPs). Two nutrient load scenarios, broadly equivalent to two Shared Socio-economic Pathways (SSPs), describe two distinct evolutions of the regional population development, agricultural practices and food demand and two scenarios for global mean sea level rise (GMSL) measure the impact of the water level on the biogeochemical cycle in the Baltic Sea. The volume averaged temperature increase at the end of the century relative to the reference period 1976-2005 is 1.3 to 2.2 K (RCP 4.5) and 2.9 to 4.2 K (RCP 8.5). Averaged salinity changes by -2.1 and +0.2 g/kg (RCP 4.5) and -3.2 and -0.2 g/kg (RCP 8.5). For temperature, uncertainties before 2080 are dominated by natural variability and ESM biases. After 2080 the largest source of uncertainty is related to the unknown greenhouse gas concentrations. As expected, uncertainties related to either SLR or nutrient loads are negligible. For salinity, the dominating source of uncertainty during the entire 21st century is explained by the biases of the ESMs. However, natural variability and, in particular by the end of the century, uncertainties due to unknown greenhouse gas concentrations and sea level rises are important as well. For hypoxic area, uncertainties before 2040 are dominated by ESM biases. After 2040 the largest source of uncertainty is related to the unknown nutrient loads (SSPs). However, ESM biases, natural variability, unknown greenhouse gas concentrations and unknown sea level rises play an important role as well. Hence, the predictability of hypoxic area on long time scales requires accurate knowledge of various drivers and accurate quality of ESMs.</p><p> </p>


Limnologica ◽  
1999 ◽  
Vol 29 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Günther Nausch ◽  
Dietwart Nehring ◽  
Gunni Aertebjerg

2020 ◽  
Vol 77 (6) ◽  
pp. 2089-2105
Author(s):  
Mayya Gogina ◽  
Michael L Zettler ◽  
Irene Wåhlström ◽  
Helén Andersson ◽  
Hagen Radtke ◽  
...  

Abstract Species in the brackish and estuarine ecosystems will experience multiple changes in hydrographic variables due to ongoing climate change and nutrient loads. Here, we investigate how a glacial relict species (Saduria entomon), having relatively cold, low salinity biogeographic origin, could be affected by the combined scenarios of climate change and eutrophication. It is an important prey for higher trophic-level species such as cod, and a predator of other benthic animals. We constructed habitat distribution models based occurrence and density of this species across the entire Baltic and estimated the relative importance of different driving variables. We then used two regional coupled ocean-biogeochemical models to investigate the combined impacts of two future climate change and nutrient loads scenarios on its spatial distribution in 2070–2100. According to the scenarios, the Baltic Sea will become warmer and fresher. Our results show that expected changes in salinity and temperature outrank those due to two nutrient-load scenarios (Baltic Sea Action Plan and business as usual) in their effect on S. entomon distribution. The results are relatively similar when using different models with the same scenarios, thereby increasing the confidence of projections. Overall, our models predict a net increase (and local declines) of suitable habitat area, total abundance and biomass for this species, which is probably facilitated by strong osmoregulation ability and tolerance to temperature changes. We emphasize the necessity of considering multiple hydrographic variables when estimating climate change impacts on species living in brackish and estuarine systems.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 115-134
Author(s):  
Daniel Neumann ◽  
Matthias Karl ◽  
Hagen Radtke ◽  
Volker Matthias ◽  
René Friedland ◽  
...  

Abstract. The western Baltic Sea is impacted by various anthropogenic activities and stressed by high riverine and atmospheric nutrient loads. Atmospheric deposition accounts for up to a third of the nitrogen input into the Baltic Sea and contributes to eutrophication. Amongst other emission sources, the shipping sector is a relevant contributor to the atmospheric concentrations of nitrogen oxides (NOX) in marine regions. Thus, it also contributes to atmospheric deposition of bioavailable oxidized nitrogen into the Baltic Sea. In this study, the contribution of shipping emissions to the nitrogen budget in the western Baltic Sea is evaluated with the coupled three-dimensional physical biogeochemical model MOM–ERGOM (Modular Ocean Model–Ecological ReGional Ocean Model) in order to assess the relevance of shipping emissions for eutrophication. The atmospheric input of bioavailable nitrogen impacts eutrophication differently depending on the time and place of input. The shipping sector contributes up to 5 % to the total nitrogen concentrations in the water. The impact of shipping-related nitrogen is highest in the offshore regions distant from the coast in early summer, but its contribution is considerably reduced during blooms of cyanobacteria in late summer because the cyanobacteria fix molecular nitrogen. Although absolute shipping-related total nitrogen concentrations are high in some coastal regions, the relative contribution of the shipping sector is low in the vicinity of the coast because of high riverine nutrient loads.


Sign in / Sign up

Export Citation Format

Share Document