scholarly journals Integrating C- and L-Band SAR Imagery for Detailed Flood Monitoring of Remote Vegetated Areas

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2745 ◽  
Author(s):  
Alberto Refice ◽  
Marina Zingaro ◽  
Annarita D’Addabbo ◽  
Marco Chini

Flood detection and monitoring is increasingly important, especially on remote areas such as African tropical river basins, where ground investigations are difficult. We present an experiment aimed at integrating multi-temporal and multi-source data from the Sentinel-1 and ALOS 2 synthetic aperture radar (SAR) sensors, operating in C band, VV polarization, and L band, HH and HV polarizations, respectively. Information from the globally available CORINE land cover dataset, derived over Africa from the Proba V satellite, and available publicly at the resolution of 100 m, is also exploited. Integrated multi-frequency, multi-temporal, and multi-polarizations analysis allows highlighting different drying dynamics for floodwater over various land cover classes, such as herbaceous vegetation, wetlands, and forests. They also enable detection of different scattering mechanisms, such as double bounce interaction of vegetation stems and trunks with underlying floodwater, giving precious information about the distribution of flooded areas among the different ground cover types present on the site. The approach is validated through visual analysis from Google EarthTM imagery. This kind of integrated analysis, exploiting multi-source remote sensing to partially make up for the unavailability of reliable ground truth, is expected to assume increasing importance as constellations of satellites, observing the Earth in different electromagnetic radiation bands, will be available.

2021 ◽  
Author(s):  
Alberto Refice ◽  
Annarita D'Addabbo ◽  
Marco Chini ◽  
Marina Zingaro

<p>The monitoring of inundation phenomena through synthetic aperture radar (SAR) data on vegetated areas can be improved through an integrated analysis of different spectral bands. The combination of data with different penetration depths beneath the vegetated canopy can help determine the response of flooded areas with distinct types of vegetation cover to the microwave signal. This is useful especially in cases, which actually constitute the majority, where ground data are scarce or not available.</p><p>The present study concerns the application of multi-temporal, multi-frequency, and multi-polarization SAR images, specifically data from the Sentinel-1 and PALSAR 2 SAR sensors, operating in C band, VV polarization, and L band, HH and HV polarizations, respectively, in synergy with globally-available land cover data, for improving flood mapping in densely vegetated areas, such as the Zambezi-Shire basin, Mozambique [1], characterized by wetlands, open and closed forest, cropland, grassland (herbaceous and shrubs), and a few urban areas.</p><p>We show how the combination of various data processing techniques and the simultaneous availability of data with different frequencies and polarizations can help to monitor floodwater evolution over various land cover classes. They also enable detection of different scattering mechanisms, such as double bounce interaction of vegetation stems and trunks with underlying floodwater, giving precious information about the distribution of flooded areas among the different ground cover types present on the site.</p><p>This kind of studies are expected to assume increasing importance as the availability of multi-frequency data from SAR satellite constellations will increase in the future, thanks to initiatives such as the EU Copernicus program L-band satellite mission ROSE-L [2], and their tight integration with Sentinel-1 as well as with other national constellations such as ALOS 2, or SAOCOM.</p><p><strong>References</strong></p><p>[1] Refice, A.; Zingaro, M.; D’Addabbo, A.; Chini, M. Integrating C- and L-Band SAR Imagery for Detailed Flood Monitoring of Remote Vegetated Areas. Water <strong>2020</strong>, 12, 2745, doi:10.3390/w12102745.</p><p>[2] Pierdicca, N.; Davidson, M.; Chini, M.; Dierking, W.; Djavidnia, S.; Haarpaintner, J.; Hajduch, G.; Laurin, G.V.; Lavalle, M.; López-Martínez, C.; et al. The Copernicus L-band SAR mission ROSE-L (Radar Observing System for Europe). In Active and Passive Microwave Remote Sensing for Environmental Monitoring III; SPIE: Washington, DC, USA, 2019; Volume 11154, p. 13.</p>


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 334
Author(s):  
Juraj Lieskovský ◽  
Dana Lieskovská

This study compares different nationwide multi-temporal spatial data sources and analyzes the cropland area, cropland abandonment rates and transformation of cropland to other land cover/land use categories in Slovakia. Four multi-temporal land cover/land use data sources were used: The Historic Land Dynamics Assessment (HILDA), the Carpathian Historical Land Use Dataset (CHLUD), CORINE Land Cover (CLC) data and Landsat images classification. We hypothesized that because of the different spatial, temporal and thematic resolution of the datasets, there would be differences in the resulting cropland abandonment rates. We validated the datasets, compared the differences, interpreted the results and combined the information from the different datasets to form an overall picture of long-term cropland abandonment in Slovakia. The cropland area increased until the Second World War, but then decreased after transition to the communist regime and sharply declined following the 1989 transition to an open market economy. A total of 49% of cropland area has been transformed to grassland, 34% to forest and 15% to urban areas. The Historical Carpathian dataset is the more reliable long-term dataset, and it records 19.65 km2/year average cropland abandonment for 1836–1937, 154.44 km2/year for 1938–1955 and 140.21 km2/year for 1956–2012. In comparison, the Landsat, as a recent data source, records 142.02 km2/year abandonment for 1985–2000 and 89.42 km2/year for 2000–2010. These rates, however, would be higher if the dataset contained urbanisation data and more precise information on afforestation. The CORINE Land Cover reflects changes larger than 5 ha, and therefore the reported cropland abandonment rates are lower.


2020 ◽  
Vol 12 (13) ◽  
pp. 2137 ◽  
Author(s):  
Ilinca-Valentina Stoica ◽  
Marina Vîrghileanu ◽  
Daniela Zamfir ◽  
Bogdan-Andrei Mihai ◽  
Ionuț Săvulescu

Monitoring uncontained built-up area expansion remains a complex challenge for the development and implementation of a sustainable planning system. In this regard, proper planning requires accurate monitoring tools and up-to-date information on rapid territorial transformations. The purpose of the study was to assess built-up area expansion, comparing two freely available and widely used datasets, respectively, Corine Land Cover and Landsat, to each other, as well as the ground truth, with the goal of identifying the most cost-effective and reliable tool. The analysis was based on the largest post-socialist city in the European Union, the capital of Romania, Bucharest, and its neighboring Ilfov County, from 1990 to 2018. This study generally represents a new approach to measuring the process of urban expansion, offering insights about the strengths and limitations of the two datasets through a multi-level territorial perspective. The results point out discrepancies between the datasets, both at the macro-scale level and at the administrative unit’s level. On the macro-scale level, despite the noticeable differences, the two datasets revealed the spatiotemporal magnitude of the expansion of the built-up area and can be a useful tool for supporting the decision-making process. On the smaller territorial scale, detailed comparative analyses through five case-studies were conducted, indicating that, if used alone, limitations on the information that can be derived from the datasets would lead to inaccuracies, thus significantly limiting their potential to be used in the development of enforceable regulation in urban planning.


2012 ◽  
Vol 18 (1) ◽  
pp. 77-85
Author(s):  
Shinya Tanaka ◽  
Tomoaki Takahashi ◽  
Hideki Saito ◽  
Yoshio Awaya ◽  
Toshiro Iehara ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Raphaël d’Andrimont ◽  
Momchil Yordanov ◽  
Laura Martinez-Sanchez ◽  
Beatrice Eiselt ◽  
Alessandra Palmieri ◽  
...  

Abstract Accurately characterizing land surface changes with Earth Observation requires geo-located ground truth. In the European Union (EU), a tri-annual surveyed sample of land cover and land use has been collected since 2006 under the Land Use/Cover Area frame Survey (LUCAS). A total of 1351293 observations at 651780 unique locations for 106 variables along with 5.4 million photos were collected during five LUCAS surveys. Until now, these data have never been harmonised into one database, limiting full exploitation of the information. This paper describes the LUCAS point sampling/surveying methodology, including collection of standard variables such as land cover, environmental parameters, and full resolution landscape and point photos, and then describes the harmonisation process. The resulting harmonised database is the most comprehensive in-situ dataset on land cover and use in the EU. The database is valuable for geo-spatial and statistical analysis of land use and land cover change. Furthermore, its potential to provide multi-temporal in-situ data will be enhanced by recent computational advances such as deep learning.


2020 ◽  
Vol 12 (6) ◽  
pp. 994 ◽  
Author(s):  
Agnese Turchi ◽  
Federico Di Traglia ◽  
Tania Luti ◽  
Davide Olori ◽  
Iacopo Zetti ◽  
...  

This study focuses on the July-August 2019 eruption-induced wildfires at the Stromboli island (Italy). The analysis of land cover (LC) and land use (LU) changes has been crucial to describe the environmental impacts concerning endemic vegetation loss, damages to agricultural heritage, and transformations to landscape patterns. Moreover, a survey was useful to collect eyewitness accounts aimed to define the LU and to obtain detailed information about eruption-induced damages. Detection of burnt areas was based on PLÉIADES-1 and Sentinel-2 satellite imagery, and field surveys. Normalized Burn Ratio (NBR) and Relativized Burn Ratio (RBR) allowed mapping areas impacted by fires. LC and LU classification involved the detection of new classes, following the environmental units of landscape, being the result of the intersection between CORINE Land Cover project (CLC) and local landscape patterns. The results of multi-temporal comparison show that fire-damaged areas amount to 39% of the total area of the island, mainly affecting agricultural and semi-natural vegetated areas, being composed by endemic Aeolian species and abandoned olive trees that were cultivated by exploiting terraces up to high altitudes. LC and LU analysis has shown the strong correlation between land use management, wildfire severity, and eruption-induced damages on the island.


Author(s):  
H. Tamiminia ◽  
S. Homayouni ◽  
A. Safari

Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.


2019 ◽  
Vol 11 (24) ◽  
pp. 2999
Author(s):  
Jörg Haarpaintner ◽  
Heidi Hindberg

The European Space Agency’s (ESA) “SAR for REDD” project aims to support complementing optical remote sensing capacities in Africa with synthetic aperture radar (SAR) for Reducing Emissions from Deforestation and Forest Degradation (REDD). The aim of this study is to assess and compare Sentinel-1 C-band, ALOS-2 PALSAR-2 L-band and combined C/L-band SAR-based land cover mapping over a large tropical area in the Democratic Republic of Congo (DRC). The overall approach is to benefit from multi-temporal observations acquired from 2015 to 2017 to extract statistical parameters and seasonality of backscatters to improve forest land cover (FLC) classification. We investigate whether and to what extent the denser time series of C- band SAR can compensate for the L-band’s deeper vegetation penetration depth and known better FLC mapping performance. The supervised classification differentiates into forest, inundated forest, woody savannah, dry and wet grassland, and river swamps. Several feature combinations of statistical parameters from both, single and multi-frequency observations in a multivariate maximum-likelihood classification are compared. The FLC maps are reclassified into forest, savannah, and grassland (FSG) and validated with a systematic sampling grid of manual interpretations of very-high-resolution optical satellite data. Using the temporal variability of the dual-polarized backscatters, in the form of either wet/dry seasonal averages or using the statistical variance, in addition to the average backscatter, increased the classification accuracies by 4–5 percent points and 1–2 percent points for C- and L-band, respectively. For the FSG validation overall accuracies of 84.4%, 89.1%, and 90.0% were achieved for single frequency C- and L-band, and C/L-band combined, respectively. The resulting forest/non-forest (FNF) maps with accuracies of 90.3%, 92.2%, and 93.3%, respectively, are then compared to the Landsat-based Global Forest Change program’s and JAXA’s ALOS-1/2 based global FNF maps.


2020 ◽  
Vol 12 (15) ◽  
pp. 2455
Author(s):  
Kazi Aminul Islam ◽  
Mohammad Shahab Uddin ◽  
Chiman Kwan ◽  
Jiang Li

Natural disasters such as flooding can severely affect human life and property. To provide rescue through an emergency response team, we need an accurate flooding assessment of the affected area after the event. Traditionally, it requires a lot of human resources to obtain an accurate estimation of a flooded area. In this paper, we compared several traditional machine-learning approaches for flood detection including multi-layer perceptron (MLP), support vector machine (SVM), deep convolutional neural network (DCNN) with recent domain adaptation-based approaches, based on a multi-modal and multi-temporal image dataset. Specifically, we used SPOT-5 and RADAR images from the flood event that occurred in November 2000 in Gloucester, UK. Experimental results show that the domain adaptation-based approach, semi-supervised domain adaptation (SSDA) with 20 labeled data samples, achieved slightly better values of the area under the precision-recall (PR) curve (AUC) of 0.9173 and F1 score of 0.8846 than those by traditional machine approaches. However, SSDA required much less labor for ground-truth labeling and should be recommended in practice.


Sign in / Sign up

Export Citation Format

Share Document