scholarly journals Selection of Macroinvertebrate Indices and Metrics for Assessing Sediment Quality in the St. Lawrence River (QC, Canada)

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3335
Author(s):  
Mélanie Desrosiers ◽  
Bernadette Pinel-Alloul ◽  
Charlotte Spilmont

This study aims to evaluate the anthropogenic pressure in the St. Lawrence River by assessing the relationships between composition and chemical contamination of sediments and macroinvertebrate community structure using a selection of indices and metrics. The aims of this study are to (i) determine the composition of macroinvertebrate community in sediments across a gradient of disturbance, (ii) select relevant macroinvertebrate indices and metrics for the assessment of sediment quality, (iii) investigate whether responses of selected indices and metrics differ across habitats and/or sediment quality classes, and finally, (iv) determine the thresholds for critical contaminants related to significant changes in the most relevant indices and metrics. Organic and inorganic contaminants as well as other sediment variables (sediment grain size, total organic carbon, nutrients, etc.) and macroinvertebrate assemblages were determined in 59 sites along the river. Fourteen macroinvertebrate indices and metrics, on the 264 initially selected, were shown to be the most effective to be used in bioassessment for the St. Lawrence River. However, the variation in macroinvertebrate indices and metrics remains strongly explained by habitat characteristics, such as sediment grain size or the level of nutrients. There is also an influence of metals and, to a lesser extent, organic contaminants such as petroleum hydrocarbons. The 14 selected indices and metrics are promising bioassessment tools that are easy to use and interpret in an environmental assessment of sediment quality in the St. Lawrence River.

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Job Mwamburi

Surficial sediments collected from the Nyanza Gulf of Lake Victoria (East Africa) were used to determine spatial concentrations of Cr and determine differences in contents of the unfractioned (whole sediment) and the finer grain size sediments, establishing any changes in Cr enrichment and potential ecological risks using sediment quality guidelines. A single pollution index was also used to evaluate level of Cr contamination. The spatial mean Cr contents in the <63 µm (silt-clay) fraction were found to be significantly lower than those in the unfractioned sediments, but with a strong linear positive correlation. The study results show decreasing spatial amounts of Cr in surficial sediments of the Nyanza Gulf, when compared to a study done 20 years earlier. However, the 95% confidence limits of the overall mean Cr in unfractioned sediments exceed the threshold effect concentration (TEC), indicating the potential for Cr remobilization from sediments. In general the sediment enrichment is evidence of possible dominance of lithogenous sources of Cr in the surface lake sediments, with potential anthropogenic sources from the drainage system and nearshore urban areas. The sediments are unpolluted with respect to geoaccumulation index, and sediment enrichment factors suggest a minor to moderate enrichment of Cr in surficial sediments of three sites around the Nyanza Gulf zones and around the river mouth in the main lake.


2021 ◽  
pp. 1-13
Author(s):  
Amr A. El-Sammak ◽  
Amal F. Alotaibi

This study aims to investigate the fate and behavior of five trace metals (Fe, Ni, Pb, Cu and V) in the surface sediments of two selected marinas, namely Ras Al-Ardh and Yacht Club, along the coastal area of Kuwait. Leached and total concentrations of Fe, Ni, Pb, Cu and V were measured along with the total organic carbon (TOC) and sediment grain size. The bioavailability of the trace metals was also determined using simple extraction techniques. The contamination factor (CF), enrichment factor (EF) and pollution load index (PLI) were used for assessing sediment quality at the marinas. The results indicated that TOC was related to the mean grain size, where higher TOC concentrations were associated with finer grain fractions. Trace metal distribution patterns were similar to the TOC in the sediments. The value of PLI showed that the Ras Al-Ardh marina had higher metal enrichment than that of the Yacht Club marina. The results of CF and EF indicated that the sediments within both marinas are "slightly polluted" to "moderately polluted". The sediments were less contaminated with Cu relative to Pb and Ni. The PLI class of metals at the Yacht Club indicated that the marina can be classified as "non-polluted" to "moderately polluted", while the Ras Al-Ardh marina can be classified as "moderately polluted" to "polluted". The study revealed that sediment grain size, TOC, and trace metal concentrations varied spatially within each marina depending on the type of development and the probable source of metals. Sediment quality has changed tremendously due to the expansion of tourism, progress in industrial activities and increase in recreational requirements near the coastal areas.


1996 ◽  
Vol 31 (2) ◽  
pp. 411-432 ◽  
Author(s):  
Michael E. Comba ◽  
Janice L. Metcalfe-Smith ◽  
Klaus L.E. Kaiser

Abstract Zebra mussels were collected from 24 sites in Lake Erie, Lake Ontario and the St. Lawrence River between 1990 and 1992. Composite samples of whole mussels (15 sites) or soft tissues (9 sites) were analyzed for residues of organochlo-rine pesticides and PCBs to evaluate zebra mussels as biomonitors for organic contaminants. Mussels from most sites contained measurable quantities of most of the analytes. Mean concentrations were (in ng/g, whole mussel dry weight basis) 154 ΣPCB, 8.4 ΣDDT, 3.5 Σchlordane, 3.4 Σaldrin, 1.4 ΣBHC, 1.0 Σendosulfan, 0.80 mirex and 0.40 Σchlorobenzene. Concentrations varied greatly between sites, i.e., from 22 to 497 ng/g for ΣPCB and from 0.08 to 11.6 ng/g for ΣBHC, an indication that mussels are sensitive to different levels of contamination. Levels of ΣPCB and Σendosulfan were highest in mussels from the St. Lawrence River, whereas mirex was highest in those from Lake Ontario. Overall, mussels from Lake Erie were the least contaminated. These observations agree well with the spatial contaminant trends shown by other biomoni-toring programs. PCB congener class profiles in zebra mussels are also typical for nearby industrial sources, e.g., mussels below an aluminum casting plant contained 55% di-, tri- and tetrachlorobiphenyls versus 31% in those upstream. We propose the use of zebra mussels as biomonitors of organic contamination in the Great Lakes.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2010 ◽  
Vol 30 (18) ◽  
pp. 1941-1950 ◽  
Author(s):  
Giovanni De Falco ◽  
Renato Tonielli ◽  
Gabriella Di Martino ◽  
Sara Innangi ◽  
Simone Simeone ◽  
...  

2009 ◽  
Vol 67 (3) ◽  
pp. 594-605 ◽  
Author(s):  
Victor Quintino ◽  
Rosa Freitas ◽  
Renato Mamede ◽  
Fernando Ricardo ◽  
Ana Maria Rodrigues ◽  
...  

Abstract Quintino, V., Freitas, R., Mamede, R., Ricardo, F., Rodrigues, A. M., Mota, J., Pérez-Ruzafa, Á., and Marcos, C. 2010. Remote sensing of underwater vegetation using single-beam acoustics. – ICES Journal of Marine Science, 67: 594–605. A single-beam, acoustic, ground-discrimination system (QTC VIEW, Series V) was used to study the distribution of underwater macrophytes in a shallow-water coastal system, employing frequencies of 50 and 200 kHz. The study was conducted in Mar Menor, SE Spain, where the expansion of Caulerpa prolifera has contributed to the silting up of the superficial sediments. A direct relationship was identified between algal biomass and sediment-fines content. Acoustic information on sediment grain size and data on algal biomass were obtained in muddy and sandy sediments, including vegetated and non-vegetated seabed. Non-vegetated muddy areas were created by diving and handpicking the algae. The multivariate acoustic data were analysed under the null hypotheses that there were no acoustic differences between bare seabeds with contrasting superficial sediment types or among low, medium, and high algal-biomass areas, having in mind that grain size can act as a confounding factor. Both null hypotheses were rejected, and the results showed that 200 kHz was better than 50 kHz in distinguishing cover levels of algal biomass. The relationship between the 200-kHz acoustic data and algal biomass suggests utility in modelling the latter using the former.


Sign in / Sign up

Export Citation Format

Share Document