scholarly journals Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1120
Author(s):  
Sinae Kim ◽  
Hakkwan Kim ◽  
Kyeung Kim ◽  
Sang-Min Jun ◽  
Soonho Hwang ◽  
...  

In this study we simulated the watershed response according to future climate and land use change scenarios through a hydrological model and predicting future hydroclimate changes by applying the Budyko framework. Future climate change scenarios were derived from the UK Earth system model (UKESM1), and future land use changes were predicted using the future land use simulation (FLUS) model. To understand the overall trend of hydroclimatic conditions, the movements in Budyko space were represented as wind rose plots. Moreover, the impacts of climate and land use changes were separated, and the watersheds’ hydroclimatic conditions were classified into five groups. In future scenarios, both increase and decrease of aridity index were observed depending on the watershed, and land use change generally led to a decrease in the evaporation index. The results indicate that as hydroclimatic movement groups are more diversely distributed by region in future periods, regional adaptation strategies could be required to reduce hydroclimatic changes in each region. The results derived from this study can be used as basic data to establish an appropriate water resource management plan and the governments’ land use plan. As an extension of this study, we can consider more diverse land use characteristics and other global climate model (GCMs) in future papers.

2019 ◽  
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. Future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human land-use change can affect the climate system through bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we developed MIROC-INTEG1 (MIROC INTEGrated terrestrial model version 1), an integrated model that combines the global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land use models. In this paper, we introduce the details and interconnections of the sub-models of MIROC-INTEG1, compare historical simulations with observations, and identify the various interactions between sub-models. MIROC-INTEG1 makes it possible to quantitatively evaluate the feedback processes or nexus between climate, water resources, crop production, land use, and ecosystem, and to assess the risks, trade-offs and co-benefits associated with future climate change and prospective mitigation and adaptation policies.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Author(s):  
Irvin Alberto Mosquera ◽  
Luis V. S. Sagrilo ◽  
Paulo M. Videiro ◽  
Fernando Sousa

Abstract Design life of offshore structures is in general in the 20-30 years range, with some cases going up to 50 years. Fatigue is one of the major design criteria for such structures. Climate change may affect the fatigue life of offshore structures, it would be necessary to update the design procedures to take into account climate change effects on structural performance. This paper aims to investigate the impact of climate change in the long-term fatigue life of offshore structures due to wave loading. For this purpose, available environmental conditions for two locations (South East Brazilian Coast and North Atlantic Ocean) generated by the HadGEM-2S global climate model, considering RCP 4.5 and RCP 8.5 (Representative Concentration Pathway - RCP) future scenarios and the historical (past) scenarios are considered. The assessment in both locations is performed for two structural models: an idealized stress spectrum for a generic fatigue hot-spot and a Steel Lazy Wave Riser (SLWR) connected to a Floating Production Storage and Offloading (FPSO). Fatigue life is estimated using the S-N curve approach. Results show that the impact on the fatigue life depends on the structure dynamic characteristics, on the geographic location and mainly on the greenhouse emission scenario. In general, for the Brazilian location, when compared to the historical scenario, most of the future scenarios lead to slightly higher fatigue damages (lower fatigue lives). On the other hand, for the North Atlantic location, there is not a clear trend for future climate change scenarios.


2008 ◽  
Vol 4 (5) ◽  
pp. 564-567 ◽  
Author(s):  
Sven Pompe ◽  
Jan Hanspach ◽  
Franz Badeck ◽  
Stefan Klotz ◽  
Wilfried Thuiller ◽  
...  

We present niche-based modelling to project the distribution of 845 European plant species for Germany using three different models and three scenarios of climate and land use changes up to 2080. Projected changes suggested large effects over the coming decades, with consequences for the German flora. Even under a moderate scenario (approx. +2.2°C), 15–19% (across models) of the species we studied could be lost locally—averaged from 2995 grid cells in Germany. Models projected strong spatially varying impacts on the species composition. In particular, the eastern and southwestern parts of Germany were affected by species loss. Scenarios were characterized by an increased number of species occupying small ranges, as evidenced by changes in range-size rarity scores. It is anticipated that species with small ranges will be especially vulnerable to future climate change and other ecological stresses.


2015 ◽  
Vol 47 (2) ◽  
pp. 356-372 ◽  
Author(s):  
Renhua Yan ◽  
Jiacong Huang ◽  
Yan Wang ◽  
Junfeng Gao ◽  
Lingyan Qi

The response of hydrologic circulation to climate and land use changes is important in studying the historical, present, and future evolution of aquatic ecosystems. In this study, the Coupled Model Inter-comparison Project Phase 5 multi-model ensemble and a raster-based Xin'anjiang model were applied to simulate future streamflows under three climate change scenarios and two land use/cover change conditions in the Xinjiang Basin, China, and to investigate the combined effect of future climate and land use/cover changes on streamflow. Simulation results indicated that future climate and land use/cover changes affect not only the seasonal distributions of streamflow, but also the annual amounts of streamflow. For each climate scenario, the average monthly streamflows increase by more than 4% in autumn and early winter, while decreasing by more than −26% in spring and summer for the 21st century. The annual streamflows present a clear decreasing trend of −27%. Compared with land use/cover change, climate change affects streamflow change more. Land use/cover change can mitigate the climate change effect from January to August and enhance it in other months. These results can provide scientific information for regional water resources management and land use planning in the future.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Heliot Zarza ◽  
Enrique Martínez-Meyer ◽  
Gerardo Suzán ◽  
Gerardo Ceballos

Veterinaria México OA ISSN: 2448-6760Cite this as:Zarza H, Martínez-Meyer E, Suzán G, Ceballos G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Veterinaria México OA. 2017;4(3). doi: 10.21753/vmoa.4.3.390.Climate change may modify the spatial distribution of reservoirs hosting emerging and reemerging zoonotic pathogens, and forecasting these changes is essential for developing prevention and adaptation strategies. The most important reservoir of bovine paralytic rabies in tropical countries, is the vampire bat (Desmodus rotundus). In Mexico, the cattle industry loses more than $2.6 million US dollar, annually to this infectious disease. Therefore, we predicted the change in the distribution of D. rotundus due to future climate change scenarios, and examined the likely effect that the change in its distribution will have on paralytic rabies infections in Mexico. We used the correlative maximum entropy based model algorithm to predict the potential distribution of D. rotundus. Consistent with the literature, our results showed that temperature was the variable most highly associated with the current distribution of vampire bats. The highest concentration of bovine rabies was in Central and Southeastern Mexico, regions that also have high cattle population densities. Furthermore, our climatic envelope models predicted that by 2050–2070, D. rotundus will lose 20 % of its current distribution while the northern and central regions of Mexico will become suitable habitats for D. rotundus. Together, our study provides an advanced notice of the likely change in spatial patterns of D. rotundus and bovine paralytic rabies, and presents an important tool for strengthening the National Epidemiological Surveillance System and Monitoring programmes, useful for establishing holistic, long-term strategies to control this disease in Mexico.Figure 4. Modelled suitability for future distribution of Desmodus rotundus according to Global Climate Model GFDL-CM3 for two time periods (2050 and 2070), and two Representative Concentration Pathways (RCP 4.5 and 8.5). Left-hand column shows suitability values, with blue indicating more suitable conditions.


2007 ◽  
Vol 10 (4) ◽  
pp. 283-294 ◽  
Author(s):  
R. Benndorf ◽  
S. Federici ◽  
C. Forner ◽  
N. Pena ◽  
E. Rametsteiner ◽  
...  

2011 ◽  
Vol 110 (3-4) ◽  
pp. 823-844 ◽  
Author(s):  
Nathan Moore ◽  
Gopal Alagarswamy ◽  
Bryan Pijanowski ◽  
Philip Thornton ◽  
Brent Lofgren ◽  
...  

2021 ◽  
Author(s):  
Shilei Peng ◽  
Chunying Wang ◽  
Sadao Eguchi ◽  
Kanta Kuramochi ◽  
Masato Igura ◽  
...  

<p>Hydrological processes at basin scale are driven by climate and land-use changes. Hiso River watershed (HRW) is within a radiocesium contaminated area caused by the disaster in Fukushima Daiichi nuclear power plant (FDNPP). It’s urgently needed to make evaluations on how changes of climate and land-use bring impacts on hydrological processes, which control pollutants transport in watershed. This study applied a combination method of Statistical DownScaling Model (SDSM) and Soil and Water Assessment Tool (SWAT) to generate future climatic and hydrologic variables. Future climate data was obtained from three Representative Concentration Pathway (RCP2.6, 4.5 and 8.5) scenarios of a single General Circulation Models (GCMs) in three future periods of 2030s, 2060s and 2090s (2010-2039, 2040-2069, 2070-2099), with a baseline period (1980-2009). Furthermore, according to land-use change in HRW during 2013-2017, three land-use change scenarios under the three future climate scenarios were established. Results suggested that SDSM showed good capabilities in capturing daily maximum/minimum temperature and precipitation. The SWAT model presented good performances in simulating monthly and yearly streamflow. Results also suggested projected higher temperatures and lower rainfall led to decreased annual water yield and evapotranspiration (ET). The annual water yield and ET decreased in most seasons while had a slight increase in spring. RCP8.5 scenario always generated larger magnitudes for climatic variables and water balance components compared with other climate scenarios. Land-use changes had strong impact on surface runoff and groundwater flow. These findings could provide reference for decontamination and revitalization policy-making under complicated land use and climate change conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document