scholarly journals Simplified Spectral Model of 3D Meander Flow

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1228
Author(s):  
Fei Yang ◽  
Yuanjian Wang ◽  
Enhui Jiang

Most 2D (two-dimensional) models either take vertical velocity profiles as uniform, or consider secondary flow in momentum equations with presupposed velocity profiles, which weakly reflect the spatio-temporal characteristics of meander flow. To tackle meander flow in a more accurate 3D (three-dimensional) way while avoiding low computational efficiency, a new 3D model based on spectral methods is established and verified in this paper. In the present model, the vertical water flow field is expanded into polynomials. Governing equations are transformed by the Galerkin method and then advection terms are tackled with a semi-Lagrangian method. The simulated flow structures of an open channel bend are then compared with experimental results. Although a zero-equation turbulence model is used in this new 3D model, it shows reasonable flow structures, and calculation efficiency is comparable to a depth-averaged 2D model.

Author(s):  
Behnam Shabani ◽  
Dong-Sheng Jeng ◽  
Jianhong Ye ◽  
Yakun Guo

In this paper, a three-dimensional numerical model is developed to analyze the ocean wave-induced seabed response. The pipeline is assumed to be rigid and anchored within a trench. Quasi-static soil consolidation equations are solved with the aid of the proposed Finite Element (FE) model within COMSOL Multiphysics. The influence of wave obliquity on seabed responses, the pore pressure and soil stresses, are studied. A comprehensive tests of FE meshes is performed to determine appropriate meshes for numerical calculations. The present model is verified with the previous analytical solutions without a pipeline and two-dimensional experimental data with a pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. However, the influences of wave obliquity on the wave-induced pore pressure are insignificant.


2014 ◽  
Vol 1064 ◽  
pp. 120-127 ◽  
Author(s):  
S.N. Grigoriev ◽  
A.N. Krasnovskii ◽  
I.A. Kazakov

A mathematical model to describe the pressure distribution in a thermoset large-sized composite rod as it travels through the pultrusion die is developed on the basis of Darcy’s law. A finite-difference method is employed to solve the governing equations of three-dimensional axis-symmetric cylindrical die geometry. The influence of pre-heating on pressure rise inside a cylindrical die inlet is investigated. The present model may be utilized to obtain the optimal linear taper angle for die inlet and process conditions to achieve maximum possible pressure rise in the die inlet.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Katrin Bauer ◽  
Alexander Rudert ◽  
Christoph Brücker

Flow dynamics are studied for different ventilation conditions at a three-dimensional model of the human lung airways. The model is based on Horsfield and Weibel data and bifurcates down to the sixth generation. The flow is analyzed numerically and compared to experimental data received from exactly the same model. Numerical and experimental results agree well. Based on this agreement, flow behavior for conventional mechanical ventilation (CMV) as well as for high frequency oscillatory ventilation (HFOV) conditions can be analyzed. Velocity profiles as well as secondary flow structures are investigated during different phases of the unsteady flow. It is shown that the velocity profiles at peak inspiration and expiration are very similar for CMV and HFOV, probably due to too short branch lengths for the development of a frequency-dependent velocity profile. At the flow reversal times, characteristic zones of bidirectional mass flow emerge with increasing amplitude at higher frequencies. Furthermore, secondary flow structures are analyzed. This investigation reveals that the structures only depend on the local curvature and branch orientation, but are not influenced much by the nearby upper or lower branching generations.


2018 ◽  
Vol 50 (5) ◽  
pp. 051406 ◽  
Author(s):  
Soledad Le Clainche ◽  
José M Pérez ◽  
José M Vega

2020 ◽  
Vol 22 (4) ◽  
pp. 939-958
Author(s):  
Indrajit Roy ◽  
D. P. Acharya ◽  
Sourav Acharya

AbstractThe present paper investigates the propagation of quasi longitudinal (qLD) and quasi transverse (qTD) waves in a magneto elastic fibre-reinforced rotating semi-infinite medium. Reflections of waves from the flat boundary with surface stress have been studied in details. The governing equations have been used to obtain the polynomial characteristic equation from which qLD and qTD wave velocities are found. It is observed that both the wave velocities depend upon the incident angle. After imposing the appropriate boundary conditions including surface stress the resultant amplitude ratios for the total displacements have been obtained. Numerically simulated results have been depicted graphically by displaying two and three dimensional graphs to highlight the influence of magnetic field, rotation, surface stress and fibre-reinforcing nature of the material medium on the propagation and reflection of plane waves.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


Sign in / Sign up

Export Citation Format

Share Document