scholarly journals Impacts of Large-Scale Groundwater Exploitation Based on Long-Term Evolution of Hydraulic Heads in Dhaka City, Bangladesh

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1357
Author(s):  
Mazeda Islam ◽  
Marc Van Van Camp ◽  
Delwar Hossain ◽  
Md. Mizanur Rahman Sarker ◽  
Shahina Khatun ◽  
...  

Dhaka city has emerged as the fastest-growing megacity, having more than 20 million inhabitants, with a growth rate of 3.62%. Unplanned and rapid urbanization, coupled with exponential population growth, has significantly altered the groundwater dynamics in Dhaka city. This study concentrates on the evolution of long-term piezometric heads of the Upper Dupi Tila aquifer (UDA) and the Middle Dupi Tila aquifer (MDA) based on long-term hydrographs, piezometric maps and synthetic graphical overviews of piezometric trends. Due to over-exploitation, the piezometric level (PL) has declined deeper than −85 and −65 m PWD (Public Works Department reference datum) in UDA and MDA, respectively. The highest rate of decline was observed in the south-central to southeastern parts of the city both in UDA (4.0 m/year) and MDA (5.74 m/year). The results clearly show that the rates of decline in PL vary from 2.25 to 5.74 m/year in both aquifers of the city, and urban expansion has greatly affected the shape and extent of the depression cone over the past four decades. The magnitudes of the depression cones in both aquifers seem to pose a considerable threat to groundwater resources, indicating that the current exploitation is not sustainable at all.

2021 ◽  
Author(s):  
Mazeda Islam ◽  
Marc Van Camp ◽  
Delwar Hossain ◽  
Md. Mizanur Rahman Sarker ◽  
Shahina Khatun ◽  
...  

<p>Dhaka city with an area of about 306 Km<sup>2</sup> and a population of more than 20 million is located in the central part of Bangladesh. Immense and prolonged groundwater abstraction due to rapid unplanned urbanization and population blast in this city have led to significant decline in groundwater level in the last three decades. 78% of the supplied water comprises groundwater from the Dupi Tila Sandstone aquifer system. Hydrogeological and geophysical data aided to the delineation of three different aquifers (based on lithology): Upper Dupi Tila aquifer (UDA), Middle Dupi Tila aquifer (MDA) and Lower Dupi Tila aquifer (LDA).  The evaluation of long-term hydrographs, piezometric maps and synthetic graphical overviews of piezometric trends in both the UDA and MDA depicts that the rate of dropping of groundwater level (GWL) is very substantial. Massive pumping in the city has altered its natural hydrologic system. The groundwater level has dropped on average 2.25 m/year and 2.8 m/year in UDA and MDA, respectively, in the whole city in 2018, whereas the average rate of decline in the center of the depression cone during this time was 4.0 m/year and 5.74 m/year respectively. Presently, the groundwater level elevation has declined to levels lower than -85 and -65 m PWD in UDA and MDA, respectively. The changes in pattern and magnitude of depression cones in UDA and MDA are directly associated with the city expansion and number of deep tube wells installed over a certain period in particular parts of the city. The depletion of GWL from 1980 to 2018 is very notable. There is only limited vertical recharge possible in the UDA and MDA as they are semi-confined aquifers, and only lateral flow mostly in the UDA and MDA from the surroundings is to be expected. In this regard the long-term management of groundwater resources in Dhaka city is urgently needed, otherwise the condition may go beyond control.</p><p> </p><p><strong>Key words:</strong> Groundwater abstraction, city expansion, hydrographs, piezometric maps, GWL decline, depression cone.</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1556
Author(s):  
Chuanhao Pu ◽  
Qiang Xu ◽  
Kuanyao Zhao ◽  
Yanan Jiang ◽  
Lina Hao ◽  
...  

A mega project, Mountain Excavation and City Construction (MECC), was launched in the hilly and gully region of the Chinese Loess Plateau in 2012, in order to address the shortage of available land and create new flat land for urban construction. However, large-scale land creation and urban expansion significantly alters the local geological environment, leading to severe ground deformation. This study investigated the topographic changes, ground deformation, and their interactions due to the MECC project in the Yan’an New District (YND). First, new surface elevations were generated using ZiYuan-3 (ZY-3) stereo images acquired after the construction in order to map the local topographic changes and the fill thickness associated with the MECC project. Then, the interferometric synthetic aperture radar (InSAR) time series and 32 Sentinel-1A images were used to assess the spatial patterns of the ground deformation in the YND during the postconstruction period (2017–2018). By combining the InSAR-derived results and topographic change features, the relationship between the ground deformation and large-scale land creation was further analyzed. The results indicated that the MECC project in the YND has created over 22 km2 of flat land, including 10.8 km2 of filled area, with a maximum fill thickness of ~110 m. Significant uneven ground deformation was detected in the land-creation area, with a maximum subsidence rate of approximately 121 mm/year, which was consistent with the field survey. The strong correlation between the observed subsidence patterns and the land creation project suggested that this recorded uneven subsidence was primarily related to the spatial distribution of the filling works, along with the changes in the thickness and geotechnical properties of the filled loess; moreover, rapid urbanization, such as road construction, can accelerate the subsidence process. These findings can guide improvements in urban planning and the mitigation of geohazards in regions experiencing large-scale land construction.


2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


2021 ◽  
Vol 13 (16) ◽  
pp. 3264 ◽  
Author(s):  
Shuang Li ◽  
Zhongqiu Sun ◽  
Yafei Wang ◽  
Yuxia Wang

Studying urban expansion from a longer-term perspective is of great significance to obtain an in-depth understanding of the process of urbanization. Remote sensing data are mostly selected to investigate the long-term expansion of cities. In this study, we selected the world-class urban agglomeration of Beijing-Tianjin-Hebei (BTH) as the study area, and then discussed how to make full use of multi-source, multi-category, and multi-temporal spatial data (old maps and remote sensing images) to study long-term urbanization. Through this study, we addressed three questions: (1) How much has the urban area in BTH expanded in the past 100 years? (2) How did the urban area expand in the past century? (3) What factors or important historical events have changed the development of cities with different functions? By comprehensively using urban spatial data, such as old maps and remote sensing images, geo-referencing them, and extracting built-up area information, a long-term series of urban built-up areas in the BTH region can be obtained. Results show the following: (1) There was clear evidence of dramatic urban expansion in this area, and the total built-up area had increased by 55.585 times, from 126.181 km2 to 7013.832 km2. (2) Continuous outward expansion has always been the main trend, while the compactness of the built-up land within the city is constantly decreasing and the complexity of the city boundary is increasing. (3) Cities in BTH were mostly formed through the construction of city walls during the Ming and Qing dynasties, and the expansion process was mostly highly related to important political events, traffic development, and other factors. In summary, the BTH area, similarly to China and most regions of the world, has experienced rapid urbanization and the history of such ancient cities should be further preserved with the combined use of old maps.


2017 ◽  
Vol 47 (8) ◽  
pp. 1123-1130 ◽  
Author(s):  
Pontus M.F. Lindgren ◽  
Thomas P. Sullivan ◽  
Douglas B. Ransome ◽  
Druscilla S. Sullivan ◽  
Lisa Zabek

Integration of trees with forage and livestock production as silvopastoralism is another potential component of intensive forest management. Stand thinning and fertilization may enhance growth of crop trees and understory forage for livestock. We tested the hypothesis that large-scale precommercial thinning (PCT) (particularly heavy thinning to ≤1000 stems·ha−1) and repeated fertilization, up to 20 years after the onset of treatments, would enhance production of graminoids, forbs, and shrubs as cattle (Bos taurus L.) forage. Results are from two long-term studies: (1) PCT (1988–2013) and (2) PCT with fertilization (PCT–FERT) (1993–2013) of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in south-central British Columbia, Canada. Mean biomass estimates of graminoids, forbs, total herbs, and shrubs were not affected by stand density. However, fertilization enhanced mean biomass estimates of graminoids, forbs, and total herbs, but not shrubs. Thus, the density part of our hypothesis was not supported, but the nutrient addition part was supported at least for the herbaceous components. Biomass of the herbaceous understory was maintained as a silvopasture component for up to 20 years (stand age 13 to 33 years) in fertilized heavily thinned stands prior to canopy closure.


2010 ◽  
Vol 40 (12) ◽  
pp. 2302-2312 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Druscilla S. Sullivan ◽  
Pontus M.F. Lindgren ◽  
Douglas B. Ransome

Snowshoe hares (Lepus americanus Exrleben, 1777), mule deer (Odocoileus hemionus (Rafinesque, 1817)), and moose (Alces alces (L., 1758)) commonly occur in young coniferous forests. This study was designed to test the hypothesis that large-scale pre-commercial thinning (PCT) and repeated fertilization 15–20 years after the onset of treatments in young lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.) stands would enhance relative habitat use by hares, deer, and moose compared with unmanaged stands. Study areas were located in south-central British Columbia, Canada. Habitat use was measured by fecal pellet and pellet-group counts. Understory vegetation and coniferous stand structure were measured in all stands. Habitat use by deer and moose was highest in heavily thinned stands, probably due to the higher levels of forage and cover provided by understory shrubs and conifers in thinned stands. Habitat use by snowshoe hares was highest in high-density stands, but also in lower-density (≤1000 stems·ha–1) stands where an increase in understory conifers provided essential cover for hares. Managers should consider the long-term nature of understory development in young stands managed for timber production. Heavy thinning (≤1000 stems·ha–1) will generate suitable understory habitat for these herbivores sooner than conventional PCT at higher stand densities.


2012 ◽  
Vol 616-618 ◽  
pp. 1335-1342 ◽  
Author(s):  
Xiao Hui Ding ◽  
Shuo Xin Zhang ◽  
Wei Zhou Zhong ◽  
Yu Jiang

The geographical dimension of urbanization is of major importance in depicting the influences of urbanization on the development of a city, since complex social-ecological systems interact in a multitude of ways at many spatial scales across time. This research introduced an indicator for assessing the spatial sustainability of a city from the perspective of landscape ecology, to provide a reasonable way for quantifying the spatial dynamic of the urban area of a city and how close the pattern of urban expansion close to a ‘compact’ way. A case study has been done in Xi’an. With the application of remote sensing technology, landscape ecology and other necessary software, the spacial sustainability of Xi’an from 1988 to 2010 were calculated, the rapid urbanization in Xi’an has significantly promoted the spatial sustainability of city from 1988 to 2000 and 2006 to 2010, whereas exerted negative effects on the spatial sustainability of the city from 2000 to 2006.


2020 ◽  
Vol 40 (4) ◽  
pp. 565-574
Author(s):  
Chris N. Thomson

Long-term monitoring of the Masked Owl Tyto novaehollandiae in a semi-urban landscape before, during and after large-scale habitat removal identified a positive response in breeding activity in the short-term and a change in prey selectivity. Over the longer term, the loss in habitat had a negative impact on site fidelity. A pair of Masked Owls exhibited high fidelity to a particular breeding territory before and during the removal of large areas of habitat within this territory. Breeding success occurred over two consecutive seasons during the removal of known habitat and other disturbance events at which time the pair and their offspring were observed to exploit disturbed habitat and newly created forest edges in search of prey. Breeding activity was supported by an increased dietary focus on introduced rodents and other mammals displaced during habitat clearing. Fidelity to the breeding territory became more irregular post-disturbance and after two years the territory appeared to be abandoned. This response may suggest that the cumulative loss of habitat for established pairs as a result of urban expansion is likely to adversely affect reproductive success and site fidelity in the longer term.


Author(s):  
Andrew Salzberg ◽  
Shomik Mehndiratta ◽  
Zhi Liu

This paper provides an overview of the recent development of urban rail systems in Chinese cites and the challenges ahead. China is set to become the world leader in length of metro lines in operation in the near to medium term. In view of the large scale of this investment, a focus on the overall economic and financial viability of these systems is needed. On the basis of analytical work supporting a project investment in the city of Kunming and a study tour of urban rail systems in China, this paper highlights four areas believed to be crucial in meeting these objectives: integration of new metro systems with existing systems of public transport, a supportive overall urban transport policy, transit-oriented development, and long-term financial sustainability. The conclusion is that in all of these areas, China possesses tools that may enable the program to succeed if they are used effectively and in concert. Any issues appear to result from a lack of attention to these four areas and from a managerial focus on ensuring the completion of the construction program above all other concerns. The RMB 1 trillion investment in urban rail construction under way in China needs to be a catalyst for joint action on the issues identified in this paper (RMB 1 is approximately US$0.15). Otherwise, Chinese cities may be left with an investment that carries large long-term costs and does not deliver the crucial economic benefits expected.


2017 ◽  
Vol 13 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Piotr Hulisz ◽  
Arkadiusz Krawiec ◽  
Sylwia Pindral ◽  
Łukasz Mendyk ◽  
Kamila Pawlikowska

AbstractThe article presents the influence of natural and anthropogenic factors on the chemical and physical properties of surface water and groundwater in the area of the city of Inowrocław. It has been shown that the properties of the waters were most strongly affected by the specific geological structure (the city is located within the Zechstein salt dome) as well as the long-term influence of a salt mine and soda plant. The composition of most analysed samples was dominated by Ca2+, Na+and Cl−ions. In places of heavy industrial activity, some water parameters were several time higher than permissible limit values according to Polish standards. It is concluded that, due to the threat to the city’s drinking groundwater resources and fertile soils, the surface water and groundwater in the area in question require permanent monitoring.


Sign in / Sign up

Export Citation Format

Share Document