scholarly journals Seasonal Variability of Snow Density in the Spanish Pyrenees

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1598
Author(s):  
Eduardo Lastrada ◽  
Guillermo Cobos ◽  
Julio Garzón-Roca ◽  
F. Javier Torrijo

Spanish latitudes and meteorological conditions cause the snow phenomena to mainly take place in mountainous areas, playing a key role in water resource management, with the Pyrenees as one of the most important and best monitored areas. Based on the most significant dataset of snow density (SDEN) in the Spanish Pyrenees for on-site manual samples and automatic measurements, in this study, single and multiple linear regression models are evaluated that relate SDEN with intra-annual time dependence and other drivers such as the seasonal accumulated precipitation, 7-day average temperatures, snow depth (SD) and elevation. The seasonal accumulated precipitation presented a more dominant influence than daily precipitation, usually being the second most dominant SDEN driver, followed by temperature. Average temperatures showed the best fitting to SDEN. The results showed similar densification rates ranging widely from 0.7 × 103 kg/L/day to 2 × 103 kg/L/day without showing a spatial pattern. The densification rate for the set of manual samples was set to 1.2 kg/L/day, very similar to the set of automatic measurements (1.3 kg/L/day). The results increase knowledge on SDEN in the Pyrenees. The SDEN regression models that are given in this work may allow us, in the future, to estimate SDEN, and consequently Snow Water Equivalent (SWE), using an economical and extensive SD and meteorological network, although the high spatial variability that has been found must be regarded. Estimating a relationship between SDEN and several climate drivers enables us to take into account the impact of climate variability on SDEN.

Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Martin Bartík ◽  
Roman Sitko ◽  
Marek Oreňák ◽  
Juraj Slovik ◽  
Jaroslav Škvarenina

AbstractIn the presented paper we deal with the impact of the mature spruce stand on the accumulation and melting of snow cover at Červenec research area located in the Western Tatras at an elevation of 1420 m a.s.l. The work analyses the data obtained from the monitoring of snow cover during the period 2009–2014 (6 seasons). Since the season 2012/2013 the measurements have been also performed in a dead part of the stand and in a meadow. The results proved significant impact of the spruce stand on hydro-physical characteristics of snow cover — snow water equivalent, snow density, as well as on their change due to the dieback of the stand. The data measured at individual locations (open space in the forest, open meadow area, living and dead forest) were tested with the paired t-test for the significance of average differences. Average snow water equivalent in the living forest, dead forest and meadow was 42%, 47% and 83% of the reference value measured at the open space in the forest, respectively. The process of snow accumulation and melting was fastest at the open space, followed by the dead forest. In the living forest, the processes were the slowest.


2021 ◽  
Vol 25 (6) ◽  
pp. 3017-3040
Author(s):  
Konstantin F. F. Ntokas ◽  
Jean Odry ◽  
Marie-Amélie Boucher ◽  
Camille Garnaud

Abstract. Canada's water cycle is driven mainly by snowmelt. Snow water equivalent (SWE) is the snow-related variable that is most commonly used in hydrology, as it expresses the total quantity of water (solid and liquid) stored in the snowpack. Measurements of SWE are, however, expensive and not continuously accessible in real time. This motivates a search for alternative ways of estimating SWE from measurements that are more widely available and continuous over time. SWE can be calculated by multiplying snow depth by the bulk density of the snowpack. Regression models proposed in the literature first estimate snow density and then calculate SWE. More recently, a novel approach to this problem has been developed and is based on an ensemble of multilayer perceptrons (MLPs). Although this approach compared favorably with existing regression models, snow density values at the lower and higher ends of the range remained inaccurate. Here, we improve upon this recent method for determining SWE from snow depth. We show the general applicability of the method through the use of a large data set of 234 779 snow depth–density–SWE records from 2878 nonuniformly distributed sites across Canada. These data cover almost 4 decades of snowfall. First, it is shown that the direct estimation of SWE produces better results than the estimation of snow density, followed by the calculation of SWE. Second, testing several artificial neural network (ANN) structural characteristics improves estimates of SWE. Optimizing MLP parameters separately for each snow climate class gives a greater representation of the geophysical diversity of snow. Furthermore, the uncertainty of snow depth measurements is included for a more realistic estimation. A comparison with commonly used regression models reveals that the ensemble of MLPs proposed here leads to noticeably more accurate estimates of SWE. This study thus shows that delving deeper into ANN theory helps improve SWE estimation.


2020 ◽  
Author(s):  
Konstantin Franz Fotios Ntokas ◽  
Jean Odry ◽  
Marie-Amélie Boucher ◽  
Camille Garnaud

Abstract. Canada's water cycle is driven mainly by snowmelt. Snow water equivalent (SWE) is the snow-related variable that is most commonly used in hydrology, as it expresses the total quantity of water (solid and liquid) stored in the snowpack. Measurements of SWE are, however, expensive and not continuously accessible in real time. This motivates a search for alternative ways of estimating SWE from measurements that are more widely available and continuous over time. SWE can be calculated by multiplying snow depth with the bulk density of the snowpack. Regression models proposed in the literature first estimate snow density and then calculate SWE. More recently, a novel approach to this problem has been developed and is based on an ensemble of multilayer perceptrons (MLPs). Although this approach compared favourably with existing regression models, snow density values at the lower and higher ends of the range remained inaccurate. Here, we improve upon this recent method for determining SWE from snow depth. We show the general applicability of the method through the use of a large data set of 234 779 snow depth-density-SWE records from 2878 non-uniformly distributed sites across Canada. These data cover almost four decades of snowfall. First, it is shown that the direct estimation of SWE produces better results than the estimation of snow density followed by the calculation of SWE. Second, optimizing MLP parameters separately for each snow climate class further improves the accuracy of SWE estimates. A comparison with commonly used regression models reveals that the ensemble of MLPs proposed here leads to noticeably more accurate estimates of SWE. This study thus shows that delving deeper into artificial neural network theory helps improve SWE estimation and that using a greater number of MLP parameters could lead to even further improvements.


2018 ◽  
Vol 23 (1) ◽  
pp. 60-71
Author(s):  
Wigiyanti Masodah

Offering credit is the main activity of a Bank. There are some considerations when a bank offers credit, that includes Interest Rates, Inflation, and NPL. This study aims to find out the impact of Variable Interest Rates, Inflation variables and NPL variables on credit disbursed. The object in this study is state-owned banks. The method of analysis in this study uses multiple linear regression models. The results of the study have shown that Interest Rates and NPL gave some negative impacts on the given credit. Meanwhile, Inflation variable does not have a significant effect on credit given. Keywords: Interest Rate, Inflation, NPL, offered Credit.


2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Rafael Alonso ◽  
José María García del Pozo ◽  
Samuel T. Buisán ◽  
José Adolfo Álvarez

Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 299
Author(s):  
Jaime Pinilla ◽  
Miguel Negrín

The interrupted time series analysis is a quasi-experimental design used to evaluate the effectiveness of an intervention. Segmented linear regression models have been the most used models to carry out this analysis. However, they assume a linear trend that may not be appropriate in many situations. In this paper, we show how generalized additive models (GAMs), a non-parametric regression-based method, can be useful to accommodate nonlinear trends. An analysis with simulated data is carried out to assess the performance of both models. Data were simulated from linear and non-linear (quadratic and cubic) functions. The results of this analysis show how GAMs improve on segmented linear regression models when the trend is non-linear, but they also show a good performance when the trend is linear. A real-life application where the impact of the 2012 Spanish cost-sharing reforms on pharmaceutical prescription is also analyzed. Seasonality and an indicator variable for the stockpiling effect are included as explanatory variables. The segmented linear regression model shows good fit of the data. However, the GAM concludes that the hypothesis of linear trend is rejected. The estimated level shift is similar for both models but the cumulative absolute effect on the number of prescriptions is lower in GAM.


2019 ◽  
Vol 13 (11) ◽  
pp. 3045-3059 ◽  
Author(s):  
Nick Rutter ◽  
Melody J. Sandells ◽  
Chris Derksen ◽  
Joshua King ◽  
Peter Toose ◽  
...  

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.


2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

&lt;p&gt;Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake &amp;#214;veruman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km&lt;sup&gt;2&lt;/sup&gt; grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.&lt;/p&gt;


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA183-WA193 ◽  
Author(s):  
W. Steven Holbrook ◽  
Scott N. Miller ◽  
Matthew A. Provart

The water balance in alpine watersheds is dominated by snowmelt, which provides infiltration, recharges aquifers, controls peak runoff, and is responsible for most of the annual water flow downstream. Accurate estimation of snow water equivalent (SWE) is necessary for runoff and flood estimation, but acquiring enough measurements is challenging due to the variability of snow accumulation, ablation, and redistribution at a range of scales in mountainous terrain. We have developed a method for imaging snow stratigraphy and estimating SWE over large distances from a ground-penetrating radar (GPR) system mounted on a snowmobile. We mounted commercial GPR systems (500 and 800 MHz) to the front of the snowmobile to provide maximum mobility and ensure that measurements were taken on pristine snow. Images showed detailed snow stratigraphy down to the ground surface over snow depths up to at least 8 m, enabling the elucidation of snow accumulation and redistribution processes. We estimated snow density (and thus SWE, assuming no liquid water) by measuring radar velocity of the snowpack through migration focusing analysis. Results from the Medicine Bow Mountains of southeast Wyoming showed that estimates of snow density from GPR ([Formula: see text]) were in good agreement with those from coincident snow cores ([Formula: see text]). Using this method, snow thickness, snow density, and SWE can be measured over large areas solely from rapidly acquired common-offset GPR profiles, without the need for common-midpoint acquisition or snow cores.


2018 ◽  
Vol 20 (91) ◽  
pp. 28-32
Author(s):  
B. B. Brychka

The study is concentrated on examination the impact of FDI on economic growth in the World during 1975–2015. The study consists of four consecutive parts, including introduction, literature review, model and methodology, data, empirical results and conclusion. Each part of the study is focused on its own goals. According to the results of the literature review, there is positive influence of FDI on economic growth in various countries. Economic growth is one of the most important goals of any country. The country image on the international level is dependent on its economic power. Economic growth provides an opportunity to improve the living standards in the country. Most researchers conclude that there is a positive influence of FDI on the countries’ economic growth. However, the impact of FDI is strong in developing countries. Moreover, this relationship is stronger in countries with higher educational and technological level, trade openness and development of the countries’ stock markets. Economists often build regression models to estimate the relationship between the variables. In order to find the impact of FDI on economic growth, we are going to apply linear regression models. We take two variables as indicators of the countries’ economic growth, including current GDP expressed in U.S dollars, and annual GDP growth rate. Taking into account that the World’s GDP in current U.S dollar is a factor variable with the mentioned resulting variables, the regression equation looks as follows: The R-squared of the built model is 0.99, indicating that roughly 100% of changes in the World’s GDP is caused by the chosen factors. As it is seen from the SAS output, the residuals of dependent variable and factors variables are distributed normally among its average value. Thus, non-normality is not observed in the model. Taking into account the coefficients of the factor variables, the log GDP is most sensitive to the changes in trade as a percent of GDP. The log GDP is not quite sensitive to the changes in FDI, since the coefficient of 0.000128 means that increasing of FDI by one unit increase the logarithmic value of GDP by $ 0.000128.


Sign in / Sign up

Export Citation Format

Share Document