scholarly journals Controlling the Structural Robustness of Zirconium-Based Metal Organic Frameworks for Efficient Adsorption on Tetracycline Antibiotics

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1869
Author(s):  
Hee-Gon Kim ◽  
Keunsu Choi ◽  
Kibong Lee ◽  
Soonjae Lee ◽  
Kyung-Won Jung ◽  
...  

Tetracyclines (TCs) are the most widely used antibiotics for the prevention and treatment of livestock diseases, but they are toxic to humans and have frequently been detected in water bodies. In this study, the physical and chemical properties of the zirconium-based metal organic framework (MOF) UiO-66 and its NH2-functionalized congener UiO-66-NH2 were investigated along with batch TC adsorption tests to determine the effect of functionalization on TC removal. TC removal was highest at pH 3 and decreased with increasing pH. Pseudo-1st and pseudo-2nd-order kinetic models were used to study the adsorption equilibrium times, and Langmuir isotherm model was found to be more suitable than Freundlich model. The maximum uptake for UiO-66 and UIO-66-NH2 was measured to be 93.6 and 76.5 mg/g, respectively. Unexpectedly, the TC adsorption capacity of UiO-66-NH2 was observed to be lower than that of UiO-66. Density functional theory calculations revealed that the pore structures are irrelevant to TC adsorption, and that the –NH2 functional group could weaken the structural robustness of UiO-66-NH2, causing a reduction in TC adsorption capacity. Accordingly, robust MOFs with zirconium-based metal clusters can be effectively applied for the treatment of antibiotics such as TC in water.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid T. Qazvini ◽  
Ravichandar Babarao ◽  
Shane G. Telfer

AbstractEfficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.


2021 ◽  
Vol 7 (18) ◽  
pp. eabg2580
Author(s):  
Weiren Cheng ◽  
Huabin Zhang ◽  
Deyan Luan ◽  
Xiong Wen (David) Lou

Conductive metal-organic framework (MOF) materials have been recently considered as effective electrocatalysts. However, they usually suffer from two major drawbacks, poor electrochemical stability and low electrocatalytic activity in bulk form. Here, we have developed a rational strategy to fabricate a promising electrocatalyst composed of a nanoscale conductive copper-based MOF (Cu-MOF) layer fully supported over synergetic iron hydr(oxy)oxide [Fe(OH)x] nanoboxes. Owing to the highly exposed active centers, enhanced charge transfer, and robust hollow nanostructure, the obtained Fe(OH)x@Cu-MOF nanoboxes exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction (HER). Specifically, it needs an overpotential of 112 mV to reach a current density of 10 mA cm−2 with a small Tafel slope of 76 mV dec−1. X-ray absorption fine structure spectroscopy combined with density functional theory calculations unravels that the highly exposed coordinatively unsaturated Cu1-O2 centers could effectively accelerate the formation of key *H intermediates toward fast HER kinetics.


2019 ◽  
Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


2019 ◽  
Author(s):  
Barbara Souza ◽  
Lorenzo Dona ◽  
Kirill Titov ◽  
Paolo Bruzzese ◽  
Zhixin Zeng ◽  
...  

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.<br>


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


2017 ◽  
Vol 201 ◽  
pp. 195-206 ◽  
Author(s):  
Dong Yang ◽  
Mohammad R. Momeni ◽  
Hakan Demir ◽  
Dale R. Pahls ◽  
Martino Rimoldi ◽  
...  

The metal–organic framework NU-1000, with Zr6-oxo, hydroxo, and aqua nodes, was modified by incorporation of hydroxylated Al(iii) ions by ALD-like chemistry with [Al(CH3)2(iso-propoxide)]2 followed by steam (ALD = atomic layer deposition). Al ions were installed to the extent of approximately 7 per node. Single-site iridium diethylene complexes were anchored to the nodes of the modified and unmodified MOFs by reaction with Ir(C2H4)2(acac) (acac = acetylacetonate) and converted to Ir(CO)2 complexes by treatment with CO. Infrared spectra of these supported complexes show that incorporation of Al weakened the electron donor tendency of the MOF. Correspondingly, the catalytic activity of the initial supported iridium complexes for ethylene hydrogenation increased, as did the selectivity for ethylene dimerization. The results of density functional theory calculations with a simplified model of the nodes incorporating Al(iii) ions are in qualitative agreement with some catalyst performance data.


Author(s):  
Sukhendu Mandal ◽  
Asha P. ◽  
R. K. Aparna ◽  
Balu P Ratheesh ◽  
Manju M Maman

Engineering defective UiO-66 with functionalized modulator may create functionality with promising physical and chemical properties. Herein, we use 2-mercaptobenzoic acid (2-MBA) as a modulator for the functionalization of defective UiO-66...


2020 ◽  
Vol 22 (22) ◽  
pp. 12821-12830
Author(s):  
Fernan Saiz ◽  
Leonardo Bernasconi

We study the reactivity of Fe(iv)O moieties supported by a metal–organic framework (MOF-74) in the oxidation reaction of methane to methanol using all-electron, periodic density-functional theory calculations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elin Grånäs ◽  
Michael Busch ◽  
Björn Arndt ◽  
Marcus Creutzburg ◽  
Guilherme Dalla Lana Semione ◽  
...  

AbstractFrom the catalytic, semiconducting, and optical properties of zinc oxide (ZnO) numerous potential applications emerge. For the physical and chemical properties of the surface, under-coordinated atoms often play an important role, necessitating systematic studies of their influence. Here we study the vicinal ZnO($$10\bar{1}4$$ 10 1 ¯ 4 ) surface, rich in under-coordinated sites, using a combination of several experimental techniques and density functional theory calculations. We determine the atomic-scale structure and find the surface to be a stable, long-range ordered, non-polar facet of ZnO, with a high step-density and uniform termination. Contrary to an earlier suggested nano-faceting model, a bulk termination fits much better to our experimental observations. The surface is further stabilized by dissociatively adsorbed H2O on adjacent under-coordinated O- and Zn-atoms. The stabilized surface remains highly active for water dissociation through the remaining under-coordinated Zn-sites. Such a vicinal oxide surface is a prerequisite for future adsorption studies with atomically controlled local step and terrace geometry.


Sign in / Sign up

Export Citation Format

Share Document