scholarly journals Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2458
Author(s):  
Xiaoyu Zhao ◽  
Dengfeng Liu ◽  
Xiu Wei ◽  
Lan Ma ◽  
Mu Lin ◽  
...  

The Han River is the water source of the South-to-North Water Diversion Project and the “Han River to Wei River Water Diversion Project” in China. In order to ensure that the water quality and quantity are sufficient for the water diversion project, the natural forest protection project, river chief system and other measures have been implemented in the Han River by the government. At the same time, several large reservoirs have been built in the Han River basin and perform the functions of water supply and hydropower generation, which is an important type of clean power. Under the influence of human activities, the coupling interaction between humans and water in the upper reach of the Han River drives the socio-hydrological evolution process. In this study, from the perspective of socio-hydrology, a model of socio-hydrological evolution (SHE) in the Han River in southern Shaanxi was built to simulate the potential evolution path of the socio-hydrological system and determine possible measures for the sustainable governance of the river basin. By adjusting the model parameters, four future scenarios were established: natural continuation, economic development, environmental protection and industrial adjustment scenarios. Taking 2018 as the base year, the evolution of socio-hydrology in the upper reaches of the Han River was predicted under the four scenarios from 2019 to 2045. The simulation results show that: (1) In the entire study area, except for domestic water, the water consumption of other departments show an upward or stable trend. There are differences in water consumption changes in the upper and lower sections, which are related to the different socio-economic conditions. (2) Comparing different development scenarios, the industrial adjustment and environmental protection scenarios are superior to the other scenarios. Natural continuation and economic development scenarios appear to be unfavorable for the sustainability of water resources and the economy. (3) In addition, based on the development scenarios, some policy suggestions are put forward, such as reducing the irrigation water quota, appropriately adjusting the industrial structure and promoting the growth of the urban population and the development of urbanization.

2014 ◽  
Vol 955-959 ◽  
pp. 1742-1746
Author(s):  
Meng Ran ◽  
Liang Guo ◽  
Jia Hui Li ◽  
Ji Ping Jiang ◽  
Jie Liu ◽  
...  

Message mapping is useful for communications which should be easy to understand and reflect the concerns of stakeholders when abrupt trans-boundary environmental pollution occurs in river basin. This paper describes the process undertaken to develop the message maps, and lessons learned thus far. The working group developed a message map for one part of east route of the South-to-North Water Diversion Project (from Yangtze River to Hongze Lake).The message map can help give clear and concise information for stakeholders communication in a crisis where emotions are high, and provides information support for information map visualization in the near future.


2019 ◽  
Vol 11 (10) ◽  
pp. 1164
Author(s):  
Bei Li ◽  
Yi-Chi Zhang ◽  
Ping Wang ◽  
Chao-Yang Du ◽  
Jing-Jie Yu

Quantifying terminal-lake dynamics is crucial for understanding water-ecosystem-economy relationship across endorheic river basins in arid environments. In this study, the spatio-temporal variations in terminal lakes of the lower Heihe River Basin were investigated for the first time since the Ecological Water Diversion Project commenced in 2000. The lake area and corresponding water consumption were determined with 248 Landsat images. Vital recovery of lakes occurred two years after the implementation of the project, and the total lake area increased by 382.6%, from 30.7 to 148.2 km2, during 2002–2017. East Juyan Lake (EJL) was first restored as a project target and subsequently reached a maximum area of 70.1 km2. Water dispersion was initiated in 2003, with the East river prioritized for restoration. Swan Lake in the East river enlarged to 67.7 km2 by 2017, while the other four lakes temporarily existed or maintained an area < 7 km2, such as West Juyan Lake. Water consumed by lakes increased synchronously with lake area. The average water consumption of the six lakes was 1.03 × 108 m3/year, with 63% from EJL. The increasing terminal lakes; however, highlight the seasonal competition for water use between riparian vegetation and lake ecosystems in water-limited areas.


2021 ◽  
Vol 13 (24) ◽  
pp. 13664
Author(s):  
Yanxia Hu ◽  
Changqing Wang ◽  
Xingxiu Yu ◽  
Shengzhou Yin

The Han River Basin is a main agricultural production area and a water source for the middle route of the South-to-North Water Diversion Project in China. Over the past 20 years, human exploitation and ecological construction have disturbed the sustainability of land productivity in the Han River Basin. Theil–Sen trend analysis, Mann–Kendall statistical test, and Hurst index methods were applied to examine spatial–temporal trends and sustainability characteristics of land net primary productivity (NPP) change in the Han River Basin from 2001 to 2019 using MOD17A3 NPP product, natural, and socio-economic data obtained from Google Earth Engine (GEE). The findings demonstrated that the interannual variation of land NPP exhibited a fluctuating upward trend, with a more pronounced growth rate from 2001 to 2010 than from 2011 to 2019. The spatial heterogeneity of land NPP was evident, with high values in the west and low values in the east. Of the basin area, 57.82% presented a significant increase in land NPP, while only 0.96% showed a significant decrease. In the future, land NPP in the Han River Basin will present sustained growth. The results were also compared with Trends.Earth’s calculations for the SDG 15.3.1 sub-indicator of land productivity. In addition, the spatial heterogeneity of factors influencing land NPP change was explored using a multiscale geographically weighted regression (MGWR) model. Precipitation and population count were the dominant factors in most regions. Besides, precipitation, population count, and human modification all exhibited inhibitory effects on the increase in land NPP except for elevation. The research can provide a scientific basis for tracking land degradation neutrality (LDN) progress and achieving sustainable socio-ecological development of the Han River Basin.


2016 ◽  
Vol 18 (6) ◽  
pp. 919-927 ◽  
Author(s):  
Wei Guozhen ◽  
Chi Zhang ◽  
Yu Li ◽  
Liu Haixing ◽  
Huicheng Zhou

It is important to identify the source information after a sudden water contamination incident occurs in a water supply system. The accuracy of the simulation model's parameters determines the accuracy of the source information. However, it is difficult to obtain the true value of these parameters by existing methods, so reduction of the errors caused by the uncertainty of these parameters is a crucial problem. A source identification framework which considers the uncertainty of the model's sensitive parameters and combines Bayesian inference and Markov Chain Monte Carlo (MCMC) algorithms simulation is established, and the South-to-North Water Diversion Project is taken as the case study in this paper. Compared with a framework which does not consider the uncertainty of the model's parameters, the proposed framework could solve the error caused by the wrong choice of model parameters and obtain more accurate results. In addition, the proposed framework based on traditional MCMC and that based on the Delayed Rejection and Adaptive Metropolis (DRAM-MCMC) are compared to prove that the DRAM-MCMC is more convergent and accurate. Lastly, the proposed framework based on DRAM-MCMC is proved to solve the problem with high practicality and generality in the studied long distance water diversion project.


2013 ◽  
Vol 353-356 ◽  
pp. 2563-2566 ◽  
Author(s):  
Dan Feng Wu ◽  
Ling Quan Dai ◽  
Hui Chao Dai

In order to rationally use water resources and meet the demands of human society, long-distance water diversion project develops rapidly in recent years. However, its effects on the ecological environment resulting from construction and operation are becoming increasingly prominent and need to be solved. With the rapid development of the network, ITT has been widely used in various fields, providing great convenience for human life and social development. A case in point is the gradual application of the ITT to water conservancy. Through the analysis of the effects caused by long distance water diversion project on the ecological environment, this paper discusses the basic conditions of ITT application in hydraulic engineering and throws light on its application in ecological and environmental protection of long-distance water diversion project.


Sign in / Sign up

Export Citation Format

Share Document