scholarly journals Hydrochemical and Isotopic Characterization of the Impact of Water Diversion on Water in Drainage Channels, Groundwater, and Lake Ulansuhai in China

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3033
Author(s):  
Yifan Han ◽  
Yuanzheng Zhai ◽  
Mengshen Guo ◽  
Xinyi Cao ◽  
Hong Lu ◽  
...  

Lakes are important natural water reservoirs that connect other water bodies and play essential roles in water supply, ecological preservation, and climate regulation. Because of global climate change and human activities, many lakes worldwide are facing severe challenges, such as ecological degradation and reductions in their water storage, levels, surface areas, and quality. Water diversion into lakes is considered an effective measure to address these challenges and has attracted much attention. Water has been diverted into Lake Ulansuhai through drainage channels from the Yellow River since 2013. This shallow lake is located in arid northern China and is greatly affected by high salinity and eutrophication. The lake is the lowest area in the Hetao basin and is a sink for terrestrial water in this region. High salinity in lake water, drainage channels, and groundwater caused by NaCl is an ongoing problem; however, water diversion has played an important role in dilution. The main hydrochemical type in the lake water is Cl·HCO3–Na·Mg, while those in the drainage channels and the groundwater show more diversity because of spatial differences. The main source of water in the lake (52–60%) is that diverted through six drainage channels on the west bank, followed by meteoric precipitation (36–38%). Groundwater recharge to the lake is minimal (west bank: 2–7%, and east bank: 1–5%). Extensive evaporation occurs in the lake before the lake water is discharged into the Yellow River through a waste canal. The hydrochemical evolution and salinization of the lake are dominated by the six drainage channels, followed by evaporation from the lake surface. Thus, resolution of soil salinization in the Hetao irrigation area is key to addressing salinity issues in the lake. This study will be helpful for the planning of future water diversion and ecological restoration.

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 509
Author(s):  
Jingwen Wu ◽  
Haiyan Zheng ◽  
Yang Xi

Runoff in snowy alpine regions is sensitive to climate change in the context of global warming. Exploring the impact of climate change on the runoff in these regions is critical to understand the dynamics of the water cycle and for the improvement of water resources management. In this study, we analyzed the long-term variations in annual runoff in the headwaters region of the Yellow River (HRYR) (a typical snowy mountain region) during the period of 1956–2012. The Soil and Water Assessment Tool (SWAT) with different elevation bands was employed to assess the performance of monthly runoff simulations, and then to evaluate the impacts of climate change on runoff. The results show that the observed runoff for the hydrological stations at lower relative elevations (i.e., Maqu and Tangnaihai stations) had a downward trend, with rates of 1.91 and 1.55 mm/10 years, while a slight upward trend with a rate of 0.26 mm/10 years was observed for the hydrological station at higher elevation (i.e., Huangheyan station). We also found that the inclusion of five elevation bands could lead to more accurate runoff estimates as compared to simulation without elevation bands at monthly time steps. In addition, the dominant cause of the runoff decline across the whole HRYR was precipitation (which explained 64.2% of the decrease), rather than temperature (25.93%).


2021 ◽  
Vol 212 ◽  
pp. 105804
Author(s):  
Dongxue Yu ◽  
Guangxuan Han ◽  
Xiaojie Wang ◽  
Baohua Zhang ◽  
Franziska Eller ◽  
...  

Author(s):  
Yu Chen ◽  
Xuyang Su ◽  
Qian Zhou

The outbreak of COVID-19 has prompted consideration of the importance of urban resilience. Based on a multidimensional perspective, the authors of this paper established a comprehensive evaluation indicator system for evaluating urban resilience in the Yellow River basin (YRB), and various methods such as the entropy value method, Theil index, exploratory spatial data analysis (ESDA) model, and geographical detector model were used to measure the spatiotemporal characteristics and influencing factors of urban resilience in the YRB from 2011 to 2018. The results are as follows. (1) From 2011 to 2018, the urban resilience index (URI) of the YRB showed a “V”-shaped dynamic evolution in the time series, and the URI increased by 13.4% overall. The resilience of each subsystem showed the following hierarchical structure: economic resilience > social resilience > ecological resilience > infrastructure resilience. (2) The URI of the three major regions—upstream, midstream, and downstream—increased, and the resilience of each subsystem in the region showed obvious regional characteristics. The comprehensive difference in URI values within the basin was found to be shrinking, and intraregional differences have contributed most to the comprehensive difference. (3) There were obvious zonal differences in the URI from 2011 to 2018. Shandong Peninsula and Hohhot–Baotou–Ordos showed a “High–High” agglomeration, while the southern and southwestern regions showed a “Low–Low” agglomeration. (4) Among the humanist and social factors, economic, fiscal, market, urbanization, openness, and innovation were found to be the factors that exert a high impact on the URI, while the impacts of natural factors were found to be low. The impact of the interaction of each factor is greater than that of a single factor.


2021 ◽  
Vol 69 (1) ◽  
pp. 29-40
Author(s):  
CaiHong Hu ◽  
Guang Ran ◽  
Gang Li ◽  
Yun Yu ◽  
Qiang Wu ◽  
...  

AbstractThe changes of runoff in the middle reaches of the Yellow River basin of China have received considerable attention owing to their sharply decline during recent decades. In this paper, the impacts of rainfall characteristics and land use and cover change on water yields in the Jingle sub-basin of the middle reaches of the Yellow River basin were investigated using a combination of statistical analysis and hydrological simulations. The Levenberg Marquardt and Analysis of Variance methods were used to construct multivariate, nonlinear, model equations between runoff coefficient and rainfall intensity and vegetation coverage. The land use changes from 1971 to 2017 were ascertained using transition matrix analysis. The impact of land use on water yields was estimated using the M-EIES hydrological model. The results show that the runoff during flood season (July to September) decreased significantly after 2000, whereas slightly decreasing trend was detected for precipitation. Furthermore, there were increase in short, intense, rainfall events after 2000 and this rainfall events were more conducive to flood generation. The “Grain for Green” project was carried out in 1999, and the land use in the middle reaches of the Yellow River improved significantly, which make the vegetation coverage (Vc) of the Jingle sub-basin increased by 13%. When Vc approaches 48%, the runoff coefficient decreased to the lowest, and the vegetation conditions have the greatest effect on reducing runoff. Both land use and climate can change the water yield in the basin, but for areas where land use has significantly improved, the impact of land use change on water yield plays a dominant role. The results acquired in this study provide a useful reference for water resources planning and soil and water conservation in the erodible areas of the middle reaches of the Yellow River basin.


2019 ◽  
Vol 11 (17) ◽  
pp. 4680 ◽  
Author(s):  
Lei Liu ◽  
Jianqin Ma ◽  
Xiuping Hao ◽  
Qingyun Li

To analyze the water-resource limitations for crops in irrigation districts along the lower reach of the Yellow River, we used the single-crop coefficient method provided by FAO-56 to analyze crop water demand (CWD) and irrigation water requirement (IWR) for the main crops (winter wheat, summer maize, and cotton) from 1971 to 2015. The impact of climate threats on IWR was then quantified based on the standardized precipitation evapotranspiration index (SPEI), following which the conflicts between water demand and water supply were analyzed. The results show that about 75.4% of the total annual IWR volume is concentrated from March to June. Winter wheat is the largest water consumer; it used an average of 67.9% of the total IWR volume. The study area faced severe water scarcity, and severe water deficits occurred mainly between March and June, which is consistent with the occurrence of drought. With the runoff from the Yellow River Basin further decreasing in the future, the water supply is expected to become more limited. IWR is negatively correlated with the SPEI. Based on the relationship between SPEI and IWR, the water allocation for irrigation can be planned at different timescales to meet the CWD of different crops.


2019 ◽  
Vol 19 (9) ◽  
pp. 6481-6495 ◽  
Author(s):  
Jialin Li ◽  
Meigen Zhang ◽  
Guiqian Tang ◽  
Yele Sun ◽  
Fangkun Wu ◽  
...  

Abstract. The concentration of secondary organic aerosol (SOA) is underestimated in current model studies. Recent research suggests that the reactive uptake of dicarbonyls contributes to the production of SOA, although few models have included this pathway. Glyoxal, an important representative component of dicarbonyls in models, is significantly underestimated. We therefore incorporated the reactive uptake of dicarbonyls into the regional air quality modeling system RAMS-CMAQ (the Regional Atmospheric Modeling System-Community Multiscale Air Quality) to evaluate the contribution of dicarbonyls to SOA, and we then assess the impact of the underestimation of glyoxal on the production of SOA in China during two time periods: 3 June to 11 July 2014 (episode 1) and 14 October to 14 November 2014 (episode 2). When the reactive uptake process was added, the modeled mean concentration of SOA in episode 1 increased by 3.65 µg m−3, which explained 34.8 % of the unaccounted-for source of SOA. Meanwhile the increase in the concentration of SOA in episode 2 was 1.82 µg m−3 as a result of the lower liquid water content and the lower amount of dicarbonyls produced from biogenic precursors in the fall. On this basis, when the glyoxal simulation was improved, the modeled mean dicarbonyl-derived SOA (AAQ) increased by more than a factor of 2 in both episodes relative to case 1. AAQ in episode 1 contributed, on average, 60.6 % of the total concentration of SOA and the increase in this contribution represented 69.1 % of the unaccounted-for concentration of SOA, whereas the mean AAQ in episode 2 accounted for 64.5 % of total concentration of SOA. Based on the results, the mean AAQ over China was generally higher in the east than in the west during the two episodes. The highest value (10–15 µg m−3) of episode 1 appeared in the areas around the lower reaches of the Yellow River, whereas the highest value of 5–10 µg m−3 in episode 2 was concentrated over regions from south of the lower reaches of the Yellow River to the south of Guangzhou Province as well as the Sichuan Basin. The contribution of AAQ to the concentration of SOA in episode 1 varied from 10 % to 90 % throughout China, with the highest contributions (70 %–90 %) in the coastal regions and offshore along the East China Sea to the South China Sea and in the southwestern regions. The fraction of AAQ to SOA in episode 2 was in the range of 10 %–80 % over China, with the fraction up to 80 % in a small portion of northeastern China.


Sign in / Sign up

Export Citation Format

Share Document