scholarly journals Risk Analysis of Instability Failure of Earth–Rock Dams Based on the Fuzzy Set Theory

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3088
Author(s):  
Hexiang Zhang ◽  
Zongkun Li ◽  
Wei Li ◽  
Ziyuan Song ◽  
Wei Ge ◽  
...  

Determining the anti-sliding instability risk of earth–rock dams involves the analysis of complex uncertain factors, which are mostly regarded as random variables in traditional analysis methods. In fact, fuzziness and randomness are two inseparable uncertainty factors influencing the stability of earth–rock dams. Most previous research only focused on the randomness or the fuzziness of individual variables. Moreover, dam systems present a fuzzy transition from a stable state into a failure state. Therefore, both fuzziness and randomness of the influencing factors should be considered in the same framework, where the instability of an earth–rock dam is regarded as a mixed process. In this paper, a fuzzy risk model of instability of earth–rock dams is established by considering the randomness and fuzziness of parameters and the failure criteria comprehensively. We obtained the probability threshold of instability risk of earth–rock dams by Monte-Carlo simulation after the fuzzy parameters were transformed into interval numbers by cut set levels. By applying the proposed model to the instability analysis of the Longxingsi Reservoir, the calculation results showed that the lower limits of risk probability under different cut set levels exceeded the instability risk standard of grade C for earth–rock dams. Compared with the traditional risk determination value, the risk interval obtained with the proposed methods reflects different degrees of dam instability risk and can provide reference for dam structure safety assessment and management.

2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2014 ◽  
Vol 926-930 ◽  
pp. 515-519
Author(s):  
Zhi Pei Zhang ◽  
Guo Qing Zhao ◽  
Li Fei ◽  
Fei Long Li

Based on a typical loess landslide of K135+514 ~ +678 section of a Highway in Shaanxi Province, the formation mechanism and the possible failure mode of the loess landslide are analyzed, and the stability of the loess landslide is evaluated. The calculation results show that the landslide is in a stable ~ basically stable state during natural condition and in unstable state after working condition. According to the basis of those analyses, the treating measures of the landslide are put forward. At last after the schemes’ comparison the "anti-slide pile + unloading + slope drainage+ plant greening" comprehensive control scheme is determined, this has certain reference significance for the similar engineering in the future.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2114
Author(s):  
Yongshui Kang ◽  
Congcong Hou ◽  
Jingyi Liu ◽  
Zhi Geng ◽  
Jianben Chen ◽  
...  

Massive deformation often occurs when deep coalmine roadways pass through a fault zone due to the poor integrity of rock mass and high tectonic stress. To study deformation characteristics of the surrounding rock in the fault zone of a coalmine, a roadway passing through the FD1041 fault zone in China’s Gugui coalfield was investigated in this research. The geo-stress characteristics of this fault zone were analyzed based on the Mohr failure theory. Furthermore, a three-dimensional model for the experimental roadway in the FD1041 fault zone was built and calculated by a numerical program based on the distinct element method. Stability conditions of the roadway, using several types of support methods, were calculated and compared. Calculation results indicated that pre-grouting provides favorable conditions for the stability of a roadway in a fault zone. Finally, an optimized support strategy was proposed and implemented in the experimental roadway. Monitored results demonstrated that the optimized support strategy is appropriate for this fault zone.


2011 ◽  
Vol 261-263 ◽  
pp. 1841-1845
Author(s):  
Hui Qin Yao

Appraisal of dam slope safety is essential for security and stability of the dyke that has been constructed for many years. According to the requirements of the appraisal of dam safety, the stability analysis of slope of Shegang dyke has been carried out by using Sweden circular-arc method, Bishop method, Engineer Corps method and Lowe method four methods under many kinds of working conditions and some conditions when the saturation line raising. Combined with the design code form embankment dam, the calculation results can be analyzed. The analysis can show that the security indexes of anti-slide under four kinds of working conditions and some conditions when the saturation line raising meet the requirements of the design code. This can provide basis for the reinforcement design of the dam, which also has a certain directive significance for the safe operation and observation of the dam in the future.


2014 ◽  
Vol 06 (03) ◽  
pp. 1450029
Author(s):  
FANG WANG ◽  
KAI LI ◽  
KAI LIU

We study wrinkling instability of a thin elastic film on a pre-stretched soft elastomer induced by the gravity of periodic array of the rods homogenously clamped on the surface of the film. By using linear perturbation analysis, we show that the periodic array of the rods can drive the wrinkling instability of the film when the gravitational force of the rods attains the threshold, and the film will wrinkle into stripes parallel to the tensile direction of the pre-stretched elastomer. Our calculation results give the stability criterion of the system, and the threshold of the gravitational force and the wavelength of the wrinkling patterns are obtained, which can be controlled by tuning the magnitude of the pre-stretch and properties of the thin film and the soft elastomer. These results may provide a regulating strategy for generating precise surface patterns in similar rod structures.


1991 ◽  
Vol 21 (2) ◽  
pp. 199-221 ◽  
Author(s):  
David C. M. Dickson ◽  
Howard R. Waters

AbstractIn this paper we present an algorithm for the approximate calculation of finite time survival probabilities for the classical risk model. We also show how this algorithm can be applied to the calculation of infinite time survival probabilities. Numerical examples are given and the stability of the algorithms is discussed.


Author(s):  
Dejan Vasic ◽  
Yuan-Ping Liu ◽  
François Costa

Two novel piezoelectric damping techniques (VSD and PWMD) are compared in this paper to the traditional resonant shunt damping technique and SSDV technique. In VSD, the switching shunt circuit turns ON or OFF according to the polarity of the vibration velocity of the host structure to shift the piezoelectric voltage phase. An external voltage source is connected to enlarge the voltage amplitude across the piezoelectric element and to optimize the dissipated power. The PWM shunt technique not only can decrease the audible noises more efficiently but also ensure the stability of the control system with a constant voltage source. The theoretical and the experimental results show that the piezoelectric voltage can be adaptive to the vibration displacement by the pulse widths variation, so the PWMD can stay in stable state with a constant voltage source and can still provide a very good performance.


Author(s):  
Bing Wei ◽  
Dong Zhou

Operating safety is one of the most important things to supercritical once-through boilers. To study the hydrodynamic characteristics of fluid in water walls of supercritical once-through boilers and to find out the instable factors will be of great significance to boiler operation. In this paper the mathematical models for hydrodynamic characteristics of fluid in water walls are established. With an example of 600MW boiler, by using the calculation program, the hydrodynamic characteristics curves without and with the throttles at the inlets of the water walls at different operating conditions are presented, the fluid flow instability and the reasons are analyzed. The calculation results show that the boiler operates stably and safely at 100% MCR (Maximum Continuous Rating) condition, the hydrodynamic instability exists at low heating loads of 30% MCR. The method of installing the throttles at the inlets of the water wall pipes will increase the parabola characteristics, help to improve the fluid instability to a certain stable extent, but due to the small curve slopes at low mass flowrates, still need to pay more attention to the low heating loads operation. The existence of gravity pressure head is good to the stability of the vertical upward flow.


Sign in / Sign up

Export Citation Format

Share Document