scholarly journals A Feasibility Assessment of Potential Artificial Recharge for Increasing Agricultural Areas in the Kerbala Desert in Iraq Using Numerical Groundwater Modeling

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3167
Author(s):  
Waqed H. Hassan ◽  
Basim K. Nile ◽  
Karrar Mahdi ◽  
Jan Wesseling ◽  
Coen Ritsema

Groundwater in Iraq is considered to be an alternative water resource, especially for areas far away from surface water. Groundwater is affected by many factors including climate change, industrial activities, urbanization, and industrialization. In this study, the effect of artificial recharge on the quantity of groundwater in the Dibdibba unconfined aquifer in Iraq was simulated using a groundwater modeling system (GMS). The main raw water source used in the artificial recharge process was the reclaimed water output (tertiary treatment) from the main wastewater treatment plant (WWTP) in Kerbala, with 20 injection wells. After calibration and validation of the three-dimensional numerical model used in this study and taking wastewater recharge rates into account, two different scenarios were applied to obtain the expected behavior of the aquifer when the groundwater levels were augmented with 5% and 10% of the daily outflow production of the WWTP in Kerbala. The model matched the observed head elevations with R2 = 0.951 for steady state and R2= 0.894 for transient simulations. The results indicate that the injection of treated water through 20 wells raised the water table in more than 91 and 136 km2 for 5000 and 10,000 m3/day pumping rates, respectively. Moreover, increasing the volume of water added to the aquifer could lead to establishing new agricultural areas, spanning more than 62 km2, extending about 20 km along the river.

2021 ◽  
Author(s):  
Oki Maulidani ◽  
Veronica Maldonado ◽  
Juan Gallardo ◽  
Victoria Zurita ◽  
Cristian Giol ◽  
...  

Abstract Waterflooding project has been implemented in Shushufindi-Aguarico mature field since late 2014. Having a compatible and cost-effective injected water is one of the key elements to ensure the success of this project. In perspective, water treatment plant was constructed in 2014 during pilot stage while water sources wells were completed in 2019 as an alternative source of injected water at the expansion stage of waterflooding project. This paper presents the comparison between both systems used as part of the water injection strategy: the Water Injection Plant (WIP) and Water Producer Wells (WPW). A complete system of water treatment plant is located in one of the production stations. The process basically starts by collecting water from production wells and workovers then treating it mechanically using a flotation unit and chemically to remove solid as well as oil contents. The water is then injected into injection wells with the help of horizontal pumping system (HPS). In the system of water source wells, two wells were converted to produce water from Hollin water reservoir utilizing electrical submersible pumps (ESP). The water is directly injected without any treatment into injection wells given the analysis of its fluid properties. The initial investment for water treatment plant is four times compared to water source well providing equal injection capacity where the operational cost per barrel of injected water is similar. The operational cost for water treatment plant refers to surface facilities maintenance and daily chemical consumption while for water source well it refers to associated cost of ESP reparation and workover operation. The average run-life of the water source wells in Ecuador Oriente basin is 1,200 days. The biggest challenge of water treatment plant is dealing with solid content whereas for water source well is on how to ensure integrity of the well and the flowline system in the high temperature and CO2 environment. Continuous improvements have been performed to address these challenges such as chemical treatment adjustments, real-time surveillance of injection wells, and modification of flowline system. Water treatment plant not only provides compatible water for injection wells but also supports water handling capacity as it utilizes water from production wells. In the other hand, compatible and clean water from Hollin water reservoir is the main benefit of water source wells. This paper will outline the pros and cons of water treatment plant and water source well based on field evaluation in Shushufindi-Aguarico field. It outlines the operational experience and lessons learned that can be used as a guide and reference when evaluating water sources for a waterflooding strategy. Economical analysis as well as continuous improvement will also be presented in this paper to deliver an integrated analysis.


2018 ◽  
Author(s):  
Luis Eduardo Ochoa-Tinajero ◽  
Marco Antonio Perez-Flores ◽  
Almendra Villela y Mendoza

Abstract. In southern Mexico at the Yucatan Peninsula (YP), cities and towns are settled on a platform of calcareous sedimentary sequence which has originated a wide formation of sinkholes, underground rivers and caverns due of karst process. The anthropogenic activities threat the only source of fresh water supply which is located in a regional unconfined aquifer; there are not lakes and rivers. For sustainable use of these resources at the YP, it is required to develop mathematical tools to help the groundwater modeling. In order to determine the geometry of the aquifer as the positions of caves, sinkholes and underground rivers we have developed software to invert three-dimensional electromagnetic low-induction numbers (3D EM-LIN) data for a set of profiles at arbitrary angle. In this work we have explored with the aid of EM-LIN geophysical method, the Chac-Mool sinkhole system at the state of Quintana Roo, Mexico. We have performed inverse modeling in 3D using the EM-34 instrument for vertical and horizontal magnetic dipoles. The 3D inversion process gives us models that allow us to correlate the path of the underground rivers with the subsurface electrical resistivity. In this work we have shown that inverse modeling of EM-LIN data is necessary to explore and understand coastal karst systems.


2014 ◽  
Vol 937 ◽  
pp. 632-638
Author(s):  
Yu Fei Cheng ◽  
Yuan Hong Li ◽  
Xiang Quan Hu ◽  
Jun De Wang ◽  
Shu Chao Lu

In order to construct the groundwater numerical simulation model, the study area was determined on the basis of the geological and hydrogeological conditions. Taking Feflow as operating platform, combining GIS with Surfer software, a study area of the structure of three-dimensional aquifer model was established, realizing the 3D visualization of a large area of the complex geological content. Combined with the hydrogeological conditions, three-dimensional geological structure of the model further generalization. The result showed that the aquifer of the vertical was generalized into the unconfined aquifer; based on the characteristics of lithology, structure, parameters and distribution of recharge and discharge in groundwater system, the study area groundwater system was characterized by isotropic saturated-unsaturated numerical flow model, and the equilibrium composition of the elements was analysed in study area, the partition of the aquifer hydrogeological parameters was divided, lay the foundation for groundwater numerical model simulation.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


2013 ◽  
Vol 838-841 ◽  
pp. 2712-2716
Author(s):  
Yong Tu ◽  
Yong Gang Bai ◽  
Yong Chen ◽  
Wei Jing Liu ◽  
Jun Xu ◽  
...  

The research on ultrafiltration membrane assisted by powdered zeolite for the treatment of secondary effluent from a municipal wastewater treatment plant was studied. The results show that membrane fouling rate is reduced by pre-coating the ultrafiltration membrane with powdered zeolite, and the treatment performance of secondary effluent is enhanced. UV-vis, three-dimensional excitation emission matrix (3D-EEM) fluorescence spectra and scanning electron microscopy (SEM) images for ultrafiltration were also discussed.


2010 ◽  
Vol 36 (10) ◽  
pp. 1224-1235 ◽  
Author(s):  
Haiyan Zhou ◽  
Liangping Li ◽  
J. Jaime Gómez-Hernández

1991 ◽  
Vol 24 (9) ◽  
pp. 331-342 ◽  
Author(s):  
C. Masciopinto ◽  
V. Palmisano ◽  
F. Tangorra ◽  
M. Vurro

The need for artificial recharge plants is the result of the qualitative and quantitative worsening of groundwater resources due to increased pumping and wastewater discharge. This paper described a system that uses artificial intelligence techniques for designing an artificial recharge plant. The system can be used as a training tool for new engineers, as well as an aid in the choices for expert engineers. The system is an application of an expert system shell running on a common p.c. machine. The model is made up of two knowledge bases, respectively denoted as Quantity artificial recharge and Quality artificial recharge. The former is related to the quantitative aspects, such as geology, climate and land availability, the latter to qualitative aspects, such as water use and treatment plant. Two case studies have been implemented in order to confirm the validity of this kind of systemic approach.


1994 ◽  
Author(s):  
P.D. Thorne ◽  
M.A. Chamness ◽  
V.R. Vermeul ◽  
Q.C. Macdonald ◽  
S.E. Schubert

Sign in / Sign up

Export Citation Format

Share Document