Developing a methodology for estimating the groundwater levels of coastal aquifers in the Gareb-Bourag plains, Morocco embedding the visual MODFLOW techniques in groundwater modeling system

2020 ◽  
Vol 11 ◽  
pp. 100471 ◽  
Author(s):  
Rachida Lyazidi ◽  
Mohamed Abdelbaset Hessane ◽  
Jaouad Filali Moutei ◽  
Mohammed Bahir
2021 ◽  
Vol 603 ◽  
pp. 126912
Author(s):  
A.M. Blanco-Coronas ◽  
C. Duque ◽  
M.L. Calvache ◽  
M. López-Chicano

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 697 ◽  
Author(s):  
Klemen Kenda ◽  
Matej Čerin ◽  
Mark Bogataj ◽  
Matej Senožetnik ◽  
Kristina Klemen ◽  
...  

In this study a thorough analysis is conducted concerning the prediction of groundwater levels of Ljubljana polje aquifer. Machine learning methodologies are implemented using strongly correlated physical parameters as input variables. The results show that data-driven modelling approaches can perform sufficiently well in predicting groundwater level changes. Different evaluation metrics confirm and highlight the capability of these models to catch the trend of groundwater level fluctuations. Despite the overall adequate performance, further investigation is needed towards improving their accuracy in order to be comprised in decision making processes.


Water Policy ◽  
2016 ◽  
Vol 18 (5) ◽  
pp. 1139-1154 ◽  
Author(s):  
Xiaolong Li ◽  
Xinlin He ◽  
Guang Yang ◽  
Li Zhao ◽  
Si Chen ◽  
...  

For effective groundwater management of a basin, it is essential that a careful water balance study be carried out. A three-dimensional transient-state finite difference groundwater flow model is used to quantify the groundwater fluxes and analyze the dynamic changes of groundwater level. After monitoring groundwater levels for 43 typical observation wells through a simulation study of the groundwater flow model with a depth of 300 m, results reveal that the study area has a lateral recharge of about 3.57 × 109 m3, which makes up 79.08% of the total recharge; total evaporation is about 1.81 × 108 m3, which makes up 3.77% of the total discharge. The balance of groundwater is negative, with a recharge and discharge difference of −2.81 × 108 m3. The correlation coefficient between the observed head and the calculated head for the simulation period is greater than 0.81, indicating the simulation results are satisfactory. The maximum groundwater drawdown is 26.59 m and the rate of the groundwater drawdown is 0.15 m/d during normal operation of the pumping well.


2020 ◽  
Vol 19 (1) ◽  
pp. 222-233
Author(s):  
P. K. Neupane ◽  
N. C. Mondal ◽  
A. Manglik

 Recurring droughts and increased exploitation of groundwater to meet the growing water needs have resulted in the decline of regional groundwater level and dry, weathered zone in a part of the Choutuppal Mandal, Nalgonda district, Telangana, India. A groundwater model has been developed using an inventory of 20 observation wells for future pumping schemes to evolve a classic interface (Build: 4.6.0.168) of available wells. The developed model has been reviewed using Visual MODFLOW, and a base map is prepared for the sub-surface structure. The area spreading about 0.43 km2is conceptualized as a two-layered model consisting of a weathered layer overlying a fractured aquifer. The model has been digitized into grids of 5m×5m in each layer. The integrated finite difference method has been utilized to discretize the groundwater flow equation and simulate groundwater flow with the help of calculated parameters along with the boundary conditions and acting stresses. Results show that the computed groundwater levels are in good agreement with the observed heads, and groundwater is flowing from the South to the North direction. The estimated velocities vary from 0.01 to 1.95 m/d. The optimum pumping schemes have also been simulated up to the year 2022. It has been observed that the maximum pumping rate should not go beyond 24m3/day. Since the drinking water demand(10-15m3/day) in the study site is below this limit, it can be inferred that the aquifer will sustain and provide enough drinking water.


2020 ◽  
Author(s):  
Katherine Malmgren ◽  
Maria da Conceição Neves ◽  
Tina Gorge

<p>Understanding the impact of climate variability on aquifer systems is important to improve future projections of groundwater availability, particularly in the context of increasing water scarcity. Coastal aquifers in Mediterranean regions are particularly sensitive to inter-annual and seasonal water storage fluctuations linked to climate forcing and climate-induced pumping. This comparative study examines the implications of climate variability modes on groundwater levels in coastal aquifers of California and Portugal. Piezometric levels in selected aquifers in Portugal (Leirosa-Monte Real and Campina de Faro) and California (Coastal Basins aquifers), spanning a period from 1988 to 2018, are analyzed using wavelet transform methods and principal component analysis. The methods expose not only the impact of the individual climate modes (AMO, PDO, ENSO, PNA in California and NAO, EA and SCAND in Portugal) but also the existence of complex transitive couplings among modes. Together, the climate modes are responsible for most (80%) of the inter-annual variability in groundwater storage in both Portugal and California coastal aquifers. However, our most important result is the recognition that transitive couplings greatly affect the hydrological responses both in Portugal and California. Coupled phases are linked to extreme piezometric levels and are associated with shifts in mode-interaction patterns. The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.</p>


2014 ◽  
Vol 937 ◽  
pp. 639-645 ◽  
Author(s):  
Yu Fei Cheng ◽  
Jun De Wang ◽  
Yuan Hong Li ◽  
Xiang Quan Hu ◽  
Shu Chao Lu

Groundwater is an important resource, it is used for variety of purposes in the inland river basins of arid western China. In recent years, the utilization ratio of surface water has been raised, the groundwater recharge rate from surface water has been reduced, and the aquifer depletion due to over-exploitation, which has led to the decline of groundwater levels and the degradation of eco-environments in the Shiyang River Basin, especially in Minqin. Therefore, the study on the groundwater levels change in recent years, as well as simulating and predicting groundwater levels in the future have gotten very important. The purpose of this study is to analyze the groundwater level variations of the study area. Basin on a conceptual groundwater model and observation groundwater level data, to establish the groundwater flow model by FEFLOW; simulated and validated the groundwater model. Finally the precision of model was evaluated. It was shown that the model could be used to predict the groundwater levels variation under different hypothesis conditions in Shiyang River Basin, which would provide the effective reference to the rational use and management of the groundwater.


2020 ◽  
Vol 28 (7) ◽  
pp. 2519-2541 ◽  
Author(s):  
Mohammad Karamouz ◽  
Davood Mahmoodzadeh ◽  
Gualbert H. P. Oude Essink

Abstract A methodology is proposed to define indices for quantifying risks under the threat of reducing in groundwater levels, the existence of saltwater intrusion (SWI), and an increasing nitrate contamination load in submarine groundwater discharge (SGD). The proposed methodology considers coastal regions under geological heterogeneity and it is tested on a groundwater system in Nassau County of Long Island, New York (USA). The numerical model is constructed with the SEAWAT code. The parameter uncertainty of this model is evaluated by coupling the Latin hypercube sampling method (as a sampling algorithm) and Monte Carlo simulation to consider the uncertainty in both hydraulic conductivity and recharge rate. The indices are presented in spatial maps that classify areas of risk to potential threats. The results show that two of the water districts have a high risk under conditions of decreasing groundwater level. Salinity occurs in the southern and southwestern parts of the Nassau County aquifer and a considerable area of high risk of SWI is identified. Furthermore, the average SGD rate with the associated fluxes of nitrate is estimated as 81.4 million m3/year (average 0.8 tons of nitrate through SGD per year), which can adversely affect the quality of life in the local coastal ecosystems. The framework developed in this study could help the water district managers to identify high-risk areas for short-term and long-term planning and is applicable to other coastal settings.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1731 ◽  
Author(s):  
Chung-Mo Lee ◽  
Se-Yeong Hamm ◽  
Sul-Min Yun ◽  
Jeong-Eun Oh ◽  
MoonSu Kim ◽  
...  

Approximately 40,000 chemical products are currently used in Korea; these products can contaminate the groundwater/soil, the surrounding environment, and organisms for extended periods of time. In this study, a hydrological field survey, a water quality analysis, and groundwater modeling were performed to identify the source and transport path of pollution that was caused by inorganic matter and artificial sweeteners, especially acesulfame, in the groundwater of an agricultural area in Chungnam Province, Korea. In the study area, a higher concentration of acesulfame displayed a spatial distribution similar to nitrate-nitrogen concentration. The characteristics of the groundwater flow and the distribution of the acesulfame were simulated using the Visual MODFLOW Classic Interface ver. 2014.1 and the MT3DMS module, respectively. The modeled area was divided into hilly (southern), residential (northwest), and agricultural (northeast) zones. The stream’s boundary was set to be the drainage channel in the southern hilly zone. From the simulation, we found that acesulfame spread actively from the source for 1–3 years before it reached equilibrium in the northern part of the model domain (the area downstream of the stream’s boundary). The concentration of acesulfame in the agricultural zone of the model domain decreased after five years, and it reached the steam boundary and residential zone within 10 years. After 10 years, most of the acesulfame was discharged from the agricultural zone and the hilly zone, while the concentration in the residential zone was approximately the same. Acesulfame is considered to be a potential indicator of man-made contamination for use in the management of groundwater quality.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3167
Author(s):  
Waqed H. Hassan ◽  
Basim K. Nile ◽  
Karrar Mahdi ◽  
Jan Wesseling ◽  
Coen Ritsema

Groundwater in Iraq is considered to be an alternative water resource, especially for areas far away from surface water. Groundwater is affected by many factors including climate change, industrial activities, urbanization, and industrialization. In this study, the effect of artificial recharge on the quantity of groundwater in the Dibdibba unconfined aquifer in Iraq was simulated using a groundwater modeling system (GMS). The main raw water source used in the artificial recharge process was the reclaimed water output (tertiary treatment) from the main wastewater treatment plant (WWTP) in Kerbala, with 20 injection wells. After calibration and validation of the three-dimensional numerical model used in this study and taking wastewater recharge rates into account, two different scenarios were applied to obtain the expected behavior of the aquifer when the groundwater levels were augmented with 5% and 10% of the daily outflow production of the WWTP in Kerbala. The model matched the observed head elevations with R2 = 0.951 for steady state and R2= 0.894 for transient simulations. The results indicate that the injection of treated water through 20 wells raised the water table in more than 91 and 136 km2 for 5000 and 10,000 m3/day pumping rates, respectively. Moreover, increasing the volume of water added to the aquifer could lead to establishing new agricultural areas, spanning more than 62 km2, extending about 20 km along the river.


Sign in / Sign up

Export Citation Format

Share Document