scholarly journals Water Extraction from Fully Polarized SAR Based on Combined Polarization and Texture Features

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3332
Author(s):  
Jikang Wan ◽  
Jiayi Wang ◽  
Min Zhu

Given the limited features (for example, the backscattering coefficient threshold range) of single-channel Synthetic Aperture Radar (SAR) images, it is difficult to distinguish ground objects similar to the backscattering coefficients of water bodies. In this paper, two representative research areas are selected (Yancheng Coastal wetland and Shijiu Lake), and the fully polarized SAR data based on Gaofen-3 are used to extract water bodies using the method of polarization decomposition and gray level co-occurrence matrix. Firstly, the multi-dimensional features of ground objects are extracted, and then the redundancy processing of multi-dimensional features is carried out by the separability index, which effectively solves the misclassification of non-water bodies and water bodies and improves the accuracy of water body extraction. The comparison between the results of full-polarization extraction and single-polarization extraction shows that both full-polarization and single-polarization extraction can extract water information, but the extraction accuracy of the full-polarization method can reach 94.74% in the area with complex wetland features, which can effectively compensate for the lack of precision of the single-polarization method. Although multi-dimensional features can be extracted from fully polarimetric SAR data, data redundancy may exist. Therefore, using the Separability index (SI) to process multi-dimensional features can effectively solve the problem of feature redundancy and improve classification accuracy.

2011 ◽  
Vol 57 (1) ◽  
pp. 37-42
Author(s):  
Krzysztof Kulpa ◽  
Mateusz Malanowski ◽  
Jacek Misiurewicz ◽  
Piotr Samczynski

Radar and Optical Images Fusion Using Stripmap SAR Data with Multilook Processing The paper presents the real-life data results of SAR and optical images data fusion. The fusion has been carried out for SAR images obtained in stripmap SAR mode using multilook processing with different methods of final image creation. The aim of the fusion was to enhance the target recognition capabilities on the Earth surface for a simple single-channel SAR receiver.


2020 ◽  
Vol 12 (13) ◽  
pp. 2152
Author(s):  
Fei Teng ◽  
Yun Lin ◽  
Yanping Wang ◽  
Wenjie Shen ◽  
Shanshan Feng ◽  
...  

The scatterings of many targets are aspect dependent, which is called anisotropy. Multi-angular synthetic aperture radar (SAR) is a suitable means of detecting this kind of anisotropic scattering behavior by viewing targets from different aspect angles. First, the statistical properties of anisotropic and isotropic scatterings are studied in this paper. X-band chamber circular SAR data are used. The result shows that isotropic scatterings have stable distributions in different aspect viewing angles while the distributions of anisotropic scatterings are various. Then the statistical properties of single polarization high-resolution multi-angular SAR images are modeled by different distributions. G 0 distribution performs best in all types of areas. An anisotropic scattering analysis method based on the multi-angular statistical properties is proposed. A likelihood ratio test based on G 0 distribution is used to measure the anisotropy. Anisotropic scatterings can be discriminated from isotropic scatterings by thresholding. Besides, the scattering direction can also be estimated by our method. AHH polarization C-band circular SAR data are used to validate our method. The result of using G 0 distribution is compared with the result of using Rayleigh distribution. The result of using G 0 distribution is the better one.


2013 ◽  
Vol 347-350 ◽  
pp. 3634-3638 ◽  
Author(s):  
Nan Zheng ◽  
Wei Zheng ◽  
Zhong Lin Xu ◽  
Da Cheng Wang

This paper carries out an algorithm research on bridge target detection in SAR images and presents a method that combines both texture features and correlation features. The method firstly extracts initial targets by using the algorithm of histogram equalization segmentation, and then conducts a contrastive analysis for targets and their surrounding background textures by using the gray level co-occurrence matrix to get rid of the false alarm target. The experimental results show that the method is simple, effective and has certain algorithm robustness.


2021 ◽  
Author(s):  
Sophie de Roda Husman ◽  
Joost J. van der Sanden ◽  
Stef Lhermitte ◽  
Marieke A. Eleveld

<p>River ice is a major contributor to flood risk in cold regions due to the physical impediment of flow caused by ice jamming. Although a variety of classifiers have been developed to distinguish ice types using HH or VV intensity of SAR data, mostly based on data from RADARSAT-1 and -2, these classifiers still experience problems with breakup classification, because meltwater development causes overlap in co-polarization backscatter intensities of open water and sheet ice pixels.</p><p>In this study, we develop a Random Forest classifier based on multiple features of Sentinel-1 data for three main classes generally present during breakup: rubble ice, sheet ice and open water, in a case study over the Athabasca River in Canada. For each ice stage, intensity of the VV and VH backscatter, pseudo-polarimetric decomposition parameters and Grey Level Co-occurrence Matrix texture features were computed for 70 verified sample areas. Several classifiers were developed, based on i) solely intensity features or on ii) a combination of intensity, pseudo-polarimetric and texture features and each classifier was evaluated based on Recursive Feature Elimination with Cross-Validation and pair-wise correlation of the studied features.</p><p>Results show improved classifier performance when including GLCM mean of VV intensity, and VH intensity features instead of the conventional classifier based solely on intensity. This highlights the importance of texture and intensity features when classifying river ice. GLCM mean incorporates spatial patterns of the co-polarized intensity and sensitivity to context, while VH intensity introduces cross-polarized surface and volume scattering signals, in contrast to the commonly used co-polarized intensity.</p><p>We conclude that the proposed method based on the combination of texture and intensity features is suitable for and performs well in physically complex situations such as breakup, which are hard to classify otherwise. This method has a high potential for classifying river ice operationally, also for data from other SAR missions. Since it is a generic approach, it also has potential to classify river ice along other rivers globally.  </p>


Author(s):  
Weiguo Cao ◽  
Marc J. Pomeroy ◽  
Yongfeng Gao ◽  
Matthew A. Barish ◽  
Almas F. Abbasi ◽  
...  

AbstractTexture features have played an essential role in the field of medical imaging for computer-aided diagnosis. The gray-level co-occurrence matrix (GLCM)-based texture descriptor has emerged to become one of the most successful feature sets for these applications. This study aims to increase the potential of these features by introducing multi-scale analysis into the construction of GLCM texture descriptor. In this study, we first introduce a new parameter - stride, to explore the definition of GLCM. Then we propose three multi-scaling GLCM models according to its three parameters, (1) learning model by multiple displacements, (2) learning model by multiple strides (LMS), and (3) learning model by multiple angles. These models increase the texture information by introducing more texture patterns and mitigate direction sparsity and dense sampling problems presented in the traditional Haralick model. To further analyze the three parameters, we test the three models by performing classification on a dataset of 63 large polyp masses obtained from computed tomography colonoscopy consisting of 32 adenocarcinomas and 31 benign adenomas. Finally, the proposed methods are compared to several typical GLCM-texture descriptors and one deep learning model. LMS obtains the highest performance and enhances the prediction power to 0.9450 with standard deviation 0.0285 by area under the curve of receiver operating characteristics score which is a significant improvement.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2014 ◽  
Vol 668-669 ◽  
pp. 1041-1044
Author(s):  
Lin Lin Song ◽  
Qing Hu Wang ◽  
Zhi Li Pei

This paper firstly studies the texture features. We construct a gray-difference primitive co-occurrence matrix to extract texture features by combining statistical methods with structural ones. The experiment results show that the features of the gray-difference primitive co-occurrence matrix are more delicate than the traditional gray co-occurrence matrix.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sihua Niu ◽  
Jianhua Huang ◽  
Jia Li ◽  
Xueling Liu ◽  
Dan Wang ◽  
...  

Abstract Background The classification of Breast Imaging Reporting and Data System 4A (BI-RADS 4A) lesions is mostly based on the personal experience of doctors and lacks specific and clear classification standards. The development of artificial intelligence (AI) provides a new method for BI-RADS categorisation. We analysed the ultrasonic morphological and texture characteristics of BI-RADS 4A benign and malignant lesions using AI, and these ultrasonic characteristics of BI-RADS 4A benign and malignant lesions were compared to examine the value of AI in the differential diagnosis of BI-RADS 4A benign and malignant lesions. Methods A total of 206 lesions of BI-RADS 4A examined using ultrasonography were analysed retrospectively, including 174 benign lesions and 32 malignant lesions. All of the lesions were contoured manually, and the ultrasonic morphological and texture features of the lesions, such as circularity, height-to-width ratio, margin spicules, margin coarseness, margin indistinctness, margin lobulation, energy, entropy, grey mean, internal calcification and angle between the long axis of the lesion and skin, were calculated using grey level gradient co-occurrence matrix analysis. Differences between benign and malignant lesions of BI-RADS 4A were analysed. Results Significant differences in margin lobulation, entropy, internal calcification and ALS were noted between the benign group and malignant group (P = 0.013, 0.045, 0.045, and 0.002, respectively). The malignant group had more margin lobulations and lower entropy compared with the benign group, and the benign group had more internal calcifications and a greater angle between the long axis of the lesion and skin compared with the malignant group. No significant differences in circularity, height-to-width ratio, margin spicules, margin coarseness, margin indistinctness, energy, and grey mean were noted between benign and malignant lesions. Conclusions Compared with the naked eye, AI can reveal more subtle differences between benign and malignant BI-RADS 4A lesions. These results remind us carefully observation of the margin and the internal echo is of great significance. With the help of morphological and texture information provided by AI, doctors can make a more accurate judgment on such atypical benign and malignant lesions.


Sign in / Sign up

Export Citation Format

Share Document