scholarly journals Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 51
Author(s):  
Jianbo Liao ◽  
Xinyue Cui ◽  
Hai Feng ◽  
Shangkun Yan

The distribution and assessment of heavy metal pollution in sediments have been extensively studied worldwide. Risk assessment methods based on total content, background values, and sediment quality guidelines are widely applied but have never been compared. We systematically sorted out these evaluation methods, obtained evaluation results using actual monitoring data, and compared their applicability. The results showed that the background values of different metals are significantly different, which may depend on their mobility. Geoaccumulation index (Igeo) and enrichment factor (EF) values invariably decreased with the increase of background values for individual heavy metal enrichment risk assessment. Compared with EF, Igeo also showed a significant positive linear correlation with heavy metal content. Pollution load index (PLI), modified contamination degree (mCd), and potential ecological risk index (RI) showed significant differences in response to background values and evaluation levels for the comprehensive risk of heavy metal enrichment, but their distribution trends along with the sampling points were basically identical. Toxic risk index (TRI), mean ERM quotient (mERMQ), and contamination severity index (CSI) were used to evaluate the damage degree of complex heavy metals to aquatic organisms and shared a similar whole-process distribution trend. The modified hazard quotient (mHQ), which is used to evaluate the toxicity of a single heavy metal to aquatic organisms, showed a significant positive linear correlation with the total content of each heavy metal, indicating that the toxic effect on organisms can be predicted through the direct monitoring. The results of this study have important guiding significance for the selection of evaluation methods for heavy metal pollution in sediments.

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dongping Liu ◽  
Jian Wang ◽  
Huibin Yu ◽  
Hongjie Gao ◽  
Weining Xu

Abstract Background Heavy metal pollution of aquatic systems is a global issue that has received considerable attention. Canonical correlation analysis (CCA), principal component analysis (PCA), and potential ecological risk index (PERI) have been applied to heavy metal data to trace potential factors, identify regional differences, and evaluate ecological risks. Sediment cores of 200 cm in depth were taken using a drilling platform at 10 sampling sites along the Xihe River, an urban river located in western Shenyang City, China. Then they were divided into 10 layers (20 cm each layer). The concentrations of the As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were measured for each layer. Eight heavy metals, namely Pb, Zn, As, Cd, Cr, Cu, Ni, and Hg, were measured for each layer in this study. Results The average concentrations of the As, Cd, Cu, Hg, and Zn were significantly higher than their background values in soils in the region, and mainly gathered at 0–120 cm in depth in the upstream, 0–60 cm in the midstream, and 0–20 cm downstream. This indicated that these heavy metals were derived from the upstream areas where a large quantity of effluents from the wastewater treatment plants enter the river. Ni, Pb, and Cr were close or slightly higher than their background values. The decreasing order of the average concentration of Cd was upstream > midstream > downstream, so were Cr, Cu, Ni and Zn. The highest concentration of As was midstream, followed by upstream and then downstream, which was different to Cd. The potential factors of heavy metal pollution were Cd, Cu, Hg, Zn, and As, especially Cd and Hg with the high ecological risks. The ecological risk levels of all heavy metals were much higher in the upstream than the midstream and downstream. Conclusions Industrial discharge was the dominant source for eight heavy metals in the surveyed area, and rural domestic sewage has a stronger influence on the Hg pollution than industrial pollutants. These findings indicate that effective management strategies for sewage discharge should be developed to protect the environmental quality of urban rivers.


2021 ◽  
Vol 9 (5) ◽  
pp. 473
Author(s):  
Magda M. Abou El-Safa ◽  
Mohamed Gad ◽  
Ebrahem M. Eid ◽  
Ashwaq M. Alnemari ◽  
Mohammed H. Almarshadi ◽  
...  

The present study focuses on the risk assessment of heavy metal contamination in aquatic ecosystems by evaluating the current situation of heavy metals in seven locations (North Amer El Bahry, Amer, Bakr, Ras Gharib, July Water Floud, Ras Shokeir, and El Marageen) along the Suez Gulf coast that are well-known representative sites for petroleum activities in Egypt. One hundred and forty-six samples of surface sediments were carefully collected from twenty-seven profiles in the intertidal and surf zone. The hydrochemical parameters, such as pH and salinity (S‰), were measured during sample collection. The mineralogy study was carried out by an X-ray diffractometer (XRD), and the concentrations of Al, Mn, Fe, Cr, Cu, Co, Zn, Cd, and Pb were determined using inductively coupled plasma mass spectra (ICP-MS). The ecological risks of heavy metals were assessed by applying the contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI). The mineralogical composition mainly comprised quartz, dolomites, calcite, and feldspars. The average concentrations of the detected heavy metals, in descending order, were Al > Fe > Mn > Cr > Pb > Cu > Zn > Ni > Co > Cd. A non-significant or negative relationship between the heavy metal concentration in the samples and their textural grain size characteristics was observed. The coastal surface sediment samples of the Suez Gulf contained lower concentrations of heavy metals than those published for other regions in the world with petroleum activities, except for Al, Mn, and Cr. The results for the CF, EF, and Igeo showed that Cd and Pb have severe enrichment in surface sediment and are derived from anthropogenic sources, while Al, Mn, Fe, Cr, Co, Ni, Cu, and Zn originate from natural sources. By comparison, the PLI and RI results indicate that the North Amer El Bahry and July Water Floud are considered polluted areas due to their petroleum activities. The continuous monitoring and assessment of pollutants in the Suez Gulf will aid in the protection of the environment and the sustainability of resources.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Peace Makuleke ◽  
Veronica M. Ngole-Jeme

Landfills are major sources of environmental pollution. This study evaluated heavy metal concentrations in soils and plants around the closed Lumberstewart landfill in Bulawayo, Zimbabwe, to determine the pollution potential of a closed landfill and the risks they present to plants growing in this environment and surrounding communities. Soil samples were collected at depths of 0–30 cm, 30–60 cm, and 60–90 cm around the landfill and at a control site and characterized for various properties and concentrations of Cd, Cu, Cr, Fe, Ni, and Zn. Samples of Datura stramonium, collected from the same sites where soil samples were collected, were also analyzed for the same heavy metals. The soils were sandy, mostly acidic (5.01 < pH < 7.65) with low organic matter content (<2%) and cation exchange capacity (<15 meq/100 g). These properties varied with depth around the landfill. Heavy metals concentrations in the soils and Datura stramonium followed the order Fe > Zn > Cu > Cr > Ni > Cd with samples from around the landfill having higher concentrations than samples from the control site. Soil heavy metal enrichment was highest at a depth of 30–60 cm. Pollution load index (PLI) values indicated that all sites around the landfill were polluted (PLI > 1). Heavy metal transfer coefficient in Datura stramonium ranged between 0.0 and 209 with <60% of the variation observed in heavy metal transfer coefficient in Datura stramonium explained by the extent of heavy metal enrichment in the soils. More than 20 years after closure of the landfill, there are indications that leachate migration may still be going on around the landfill. Monitoring of environments around closed landfills needs to be ongoing to mitigate negative impacts on humans and the environment.


2021 ◽  
Author(s):  
Fangfang Miao ◽  
Yimei Zhang ◽  
Shuai Li ◽  
Yaxiao Duan ◽  
Yuxian Lai ◽  
...  

Abstract Soil heavy metal contaminated sites with multiple sources of pollution have caused worldwide public concern. However, the lack of correlation of risk assessment or source identification of heavy metal leads to unclear direction of source governance. Although previous studies have involved different risk assessment, few attempts have been made to establish a link between them. In order to design a comprehensive risk assessment system, it is necessary to identify the specific source risks and the correlation and comparison between environmental risk assessment. In this paper, a methodology was established by combining source apportionment of ecological risks and human health risks (SERA) to characterize the sources and source-specific risks of heavy metals in soil. Positive matrix factorization (PMF) model was used to identify and classify potential sources of heavy metals in the study area. According to the results, they will be incorporated into the environmental risk model to evaluate environmental risk of the identified sources of heavy metals. The results showed that concentrations of Cd and Hg were highly above the background values, indicating a moderate enrichment. It was worth noting that the source contributed ecological risk index (SCEI) of Hg, with the value of 51.16 contributed mainly by the pollutant sources of waste treatment, has reached moderate ecological risk. The SCEI of Cd contributed by industrial activities (the wastewater and dyeing process) showed the most predominant source of contribution. The source contributed human health risk index (SCHI) of As contributed most by pollutant sources of agriculture activities. Overall, the modified total health risk posed by soil heavy metals SCHI was 1.11E+00, showing potential risk to the residents. This study provides a new insight for the treatment of mutil-sources of soil heavy metal pollution and also some reference value for the improvement of the risk assessment system.the main finding: Exploring a methodology (SERA) to quantitatively characterize the relationship between pollutants sources and environmental risk assessment based on source contribution.


2021 ◽  
Author(s):  
Yan Li ◽  
Dike Feng ◽  
Meiying Ji ◽  
Zhanpeng Li ◽  
Ruocheng Zhang ◽  
...  

Abstract With the rapid development of China's industrial economy, heavy metals and other pollutants continue to accumulate in the environment, which has created serious threats for the ecological environment and human health. To comprehensively evaluate the ecological risks from heavy metals in the soil in Nanjing, China, as well as the status of the risks to human health, this study randomly collected 50 surface soil samples, and the contents of Al, Ca, Fe, Mg, Mn, Ni, Ti, Cd, Cr, Cu, Pb and Zn in the samples were determined, combined with the ecological risk index and the USEPA health risk assessment model for a comprehensive risk assessment of soil heavy metals in Nanjing. The results show that there has been heavy metal enrichment of Mn, Pb, Zn and other heavy metals in the research area in Nanjing city, and the variation coefficients of Pb and Cu are distinctly large; that is, the distribution of Pb and Cu in the research area shows a great fluctuation. These elements are all slightly polluting, among which the Cu heavy metal pollution degree is different, and Pb element pollution is the most serious. Children are at a high risk of exposure in various ways, among which Pb and Cu elements have a high risk of causing non-carcinogenic issues. Overall, Pb and Cu in Nanjing are important risk elements that should be monitored and controlled. The results of the correlation analysis showed that the content changes of Pb, Zn and Cu; Ni, Ti and Fe; and Zn and Pb had extremely significant correlations, indicating that they may have the same source; while Ti and Ca, Ti and Cu, and Pb and Zn showed opposite changes, indicating that their concentrations were inversely related. The results of the principal component analysis showed that industrial sources in Nanjing contributed the most heavy metals, reaching 34.4%. The second largest source was from parent material and fertilizer, which contributed 32.3% and 19.6%, respectively. The sources with the lowest contributions were from weathering and deposition, which reached 13.7%.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 507-514
Author(s):  
C. Erber ◽  
P. Felix-Henningsen

At the beginning of the 20th century municipal wastewater was used to fertilize grassland in the freshwater marsh of the river Weser. In 1987, 150 ha of the marsh became part of a mitigation area with artificial inundation during winter and spring. Heavy metal input may be expected from former wastewater treatment and artificial flooding nowadays. In addition, inundation may increase the availability of heavy metals that were accumulated during municipal wastewater treatment. In order to get an idea of heavy metal content and availability, the content of Cd, Cr, Cu, Ni, Pb, and Zn of the soil, the vegetation, and the input due to inundation were determined. Metal enrichment in the epipedon is evident for Cr, Cu, Pb, and Zn. Total content of Pb and Zn exceed the precaution limit. Soils treated with wastewater seems to contain more heavy metals than the ones without. Inundation causes an input of metals, but it is very low and varies in a broad range. Metal input is higher by atmospheric deposition than the one due to inundation. Degree of enrichment can be arranged in the order: atmospheric deposition &gt; municipal wastewater &gt;&gt; inundation. In shallow ditch soils heavy metals are becoming more available.


Author(s):  
Q. Tang ◽  
Y. Bao ◽  
X. He ◽  
A. Wen

Abstract. The Three Gorges Reservoir encompasses a riparian zone with a vertical height of 30 m and a total area of 349 km2 that has been subjected to alternate inundation and exposure due to regular impoundment. Sedimentation on the riparian landforms constitutes an important pathway for riverine contaminant redistribution. In an attempt to understand heavy metal enrichment since water inundation, riparian sediments and soils were sampled along five transects in a typical riparian zone composed of cultivated bench terraces in the middle reaches. Heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) were determined to characterize the lateral distribution and vertical transfer ratio. The results indicated that all heavy metals were enriched to varying extents both in the riparian sediments and soils, compared with regional background contents in soils and the reference levels in sediments. However, heavy metal levels in the riparian sediments were generally higher than those in the riparian soils, while those in the upper riparian soils (0–5 cm) were overall slightly higher than those in the lower riparian soils (5–10 cm). There was a decreasing trend of heavy metal contents with increasing elevation. The elevated levels of heavy metals in the riparian sediments may be attributed to sediment yields from upstream anthropogenic sources, especially during major rainstorms in the wet season when large loads of contaminated sediment may be produced from diffuse source areas. Heavy metals can also be adsorbed to pure sediment in the course of mobilization or after deposition. Considering that the riparian soils are local weathering products without mobilization, the enrichment of heavy metals may principally be ascribed to chemical adsorption from dissolved fractions or vertical transfer from overlaid sediments. Heavy metal enrichment may further be affected by the specific type of hydrologic regime such that relatively long flooding duration caused by water impoundment and natural floods was responsible for the relatively higher levels of heavy metals in the lower portions of the riparian zone.


Sign in / Sign up

Export Citation Format

Share Document