scholarly journals Economic Analysis of Atomization Drying of Concentrated Solution Based on Zero Discharge of Desulphurization Wastewater

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 148
Author(s):  
Ning Zhao ◽  
Yongxin Feng ◽  
Debo Li ◽  
Limei Chen

With the improvement of environmental protection requirements, more and more attention has been given to desulphurization wastewater with zero discharge in coal power plants. Atomization drying is part of the main zero discharge technologies at present. Economic analysis of the atomization drying of desulphurization wastewater is beneficial to the formulation of an appropriate operation scheme and to the reduction of operation costs. The economic analysis and sensitivity analysis of different operating conditions such as unit load, the handling capacity of concentrates, and the temperature of the extracted flue gas in the atomization drying process of concentrated desulfurized wastewater were carried out in this paper. The main cost of the drying process came from the influence of flue gas extraction on the overall heat transfer in the boiler, resulting in the decrease in power generation revenue, which can reach more than 80%. The operating cost of auxiliary machinery was relatively low. The cost of treatment for per ton of concentrates increased first and then decreased with the increase in temperature of the extracted flue gas, and it decreased with the increase in the handling capacity of the concentrates. The effect of a unit load on the treatment cost was also related to the temperature of the extracted flue gas, and the optimal flue gas temperature increase to higher temperatures as the unit load decreased. The minimum treatment costs per ton of concentrate ranged from CNY 143.54/t to CNY 158.77/t under different unit loads. Sensitivity analysis showed that the temperature of the extracted flue gas had the greatest impact on treatment cost, and its sensitivity coefficient was 0.0834. The ways in which to improve economic benefits were discussed.

1997 ◽  
Vol 119 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Saghiruddin ◽  
M. Altamush Siddiqui

Economic analysis of ordinary and evacuated tubular type flat-plate collectors have been carried out for operating absorption cycles with and without heat recovery absorber. Water-ammonia, NaSCN-NH3 and LiNO3-NH3 have been selected as the working fluids in the cycles. Use of a heat recovery absorber, in addition to the primary absorber in the conventional absorption cycles, lead to improvement in the system performances by about 20–30 percent in the H2O-NH3 and 33–36 percent in the NaSCN-NH3 and LiNO3-NH3 mixtures. Subsequently, there is a considerable amount of reduction in the cost of the solar collector required to operate them. For the set of operating conditions, in this theoretical study, the cost reduces to about 25 percent in the H2O-NH3 and 30 percent in the NaSCN and LiNO3-NH3 cycles.


Author(s):  
Rosa-Hilda Chavez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

Amine absorption technology, in particular that based on the Monoethanolamine (MEA) process, is considered to be viable for low pressure flue gas CO2 capture because of the MEA-CO2 fast reaction rate. MEA absorption processes are associated with high capital and operating cost because a significant amount of energy is required for solvent regeneration and severe operating problems are present such as corrosion and solvent loss and degradation. The overall objective of this study is to evaluate the feasibility of obtaining the heat required for amine absorption for a particular recovery of carbon dioxide. Comparisons among cases were performed to determine the best operating conditions for CO2 capture. An analysis of the lean loading and recovery percent were carried out as well as the different absorber and stripper combinations by using the chemical processes simulator.


2012 ◽  
Vol 610-613 ◽  
pp. 1463-1468
Author(s):  
Ding Yang

This paper analyzes the active coke FGD fundamental principles, structures and current applying situations, and calculates the initial investment active coke FGD and limestone-gypsum FGD. Moreover, it calculates the operating cost by raw material price and products price in China, and compares the initial investment cost and operating cost of the two FGD technologies in different usage period. This paper concludes that the high investment cost limits the wide application of active coke FGD, it can only be applied in some projects need sulfuric acid.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2585
Author(s):  
Jessica Guadalupe Tobal-Cupul ◽  
Estela Cerezo-Acevedo ◽  
Yair Yosias Arriola-Gil ◽  
Hector Fernando Gomez-Garcia ◽  
Victor Manuel Romero-Medina

The Mexican Caribbean Sea has potential zones for Ocean Thermal Energy Conversion (OTEC) implementation. Universidad del Caribe and Instituto de Ciencias del Mar y Limnologia, with the support of the Mexican Centre of Innovation in Ocean Energy, designed and constructed a prototype OTEC plant (OTEC-CC-MX-1 kWe), which is the first initiative in Mexico for exploitation of this type of renewable energy. This paper presents a sensitivity analysis whose objective was to know, before carrying out the experimental tests, the behavior of OTEC-CC-MX-1 kWe regarding temperature differences, as well as the non-possible operating conditions, which allows us to assess possible modifications in the prototype installation. An algorithm was developed to obtain the inlet and outlet temperatures of the water and working fluid in the heat exchangers using the monthly surface and deep-water temperature data from the Hybrid Coordinate Ocean Model and Geographically Weighted Regression Temperature Model for the Mexican Caribbean Sea. With these temperatures, the following were analyzed: fluctuation of thermal efficiency, mass flows of R-152a and water and power production. By analyzing the results, we verified maximum and minimum mass flows of water and R-152a to produce 1 kWe during a typical year in the Mexican Caribbean Sea and the conditions when the production of electricity is not possible for OTEC-CC-MX-1 kWe.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


2021 ◽  
Vol 107 ◽  
pp. 203-208
Author(s):  
Ogheneruona E. Diemuodeke ◽  
Michael Orji ◽  
Clinton Ikechukwu ◽  
Yacob Mulugetta ◽  
Youba Sokona ◽  
...  

This paper presents solar PV electric cooking systems to fill the gap of clean energy stove demand in Africa and in particular in rural communities. The design analyses of four different solar PV electric cooking configurations, based on resistive burner and induction burner, are presented. The levelised cost of energy (LCOE) of the solar PV induction e-cooking, with battery storage, is 0.39 $/kWh. Sensitivity analysis was done to ascertain the affordability range of solar PV e-cooking. It was shown that the combination of the reduced cost of investment and good sunshine would most likely make the solar PV induction e-cooking competitive. However, the acceptability of the solar PV induction cooking will require addressing some important technical, economic, policy and socio-cultural related barriers.


Author(s):  
Yufan Bu ◽  
Limin Wang ◽  
Xiaoyang Wei ◽  
Lei Deng ◽  
Defu Che

Nitrogen oxide (NOx) emitted from boilers in coal-fired power plant may be reduced by 90 percent through the application of the selective catalytic reduction (SCR). However, the escaped ammonia from the SCR systems could react with sulfur oxides (SOx) in the flue gas to form ammonium bisulfate (ABS) in exhaust systems. The blockage and corrosion caused by ABS seriously impact the rotary air preheater (RAPH), which would not only increase operating cost on ash-blowing and cleaning but also lead to unplanned outage. To solve the problem, in this paper a novel preheater system is proposed. A single preheater is split into two sub-preheaters, between which the main flue gas flow is mixed with the recirculated flue gas from outlet of the lower-temperature preheater. After the mixing point, a reaction chamber and a precipitator are installed. A numerical finite difference method (FDM) is employed to model the RAPH and obtain the accurate temperature distribution of fluid and heat transfer elements. The initial formation temperatures of (NH4)2SO4 and ABS are 200 °C and 170 °C, respectively, according to the flue gas composition in this work. By calculation, this split design of the RAPH is believed to be effective in reducing deposition of ABS.


Sign in / Sign up

Export Citation Format

Share Document