scholarly journals Partitioning of Cotton Field Evapotranspiration under Mulched Drip Irrigation Based on a Dual Crop Coefficient Model

Water ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 72 ◽  
Author(s):  
Fuqiang Tian ◽  
Pengju Yang ◽  
Hongchang Hu ◽  
Chao Dai
2019 ◽  
Vol 62 (3) ◽  
pp. 571-584 ◽  
Author(s):  
Chuanjuan Wang ◽  
Jiandong Wang ◽  
Di Xu ◽  
Yanqun Zhang ◽  
Shihong Gong ◽  
...  

Abstract. Our investigations into the water consumption patterns of maize ( L.) grown using surface drip irrigation with and without plastic mulching were based on three consecutive years (2014-2016) of field experiments in a typical area of northeastern China. We evaluated seasonal crop evapotranspiration (ETc) and how it was partitioned into soil evaporation (Es) and plant transpiration (Tp) during the season. Development of crop coefficient (Kc) prediction models was based on the growth day (GD) and leaf area index (LAI) of the crop, as well as the growing degree-days of air (GDDair) and soil (GDDsoil). Results showed that plastic mulching significantly reduced Es by 41.6 to 53.5 mm (p < 0.05) compared to not mulching, while it increased Tp by 23.2 to 40.4 mm (p > 0.05) for spring-planted maize. While plastic mulching normally reduced ETc during the crop growth period, the change was not significant (p > 0.05). The three-year mean Kc for the maize growth period declined by 3.0% under plastic mulching. The mean Kc was lower for the plastic mulching treatment than for the non-mulching treatment in both the early and late season, while it was slightly higher at mid-season. The three-year means of mid-season Kc (Kc-mid) under plastic mulching and non-mulching were 1.06 and 1.05 lower, respectively, than the FAO-56 recommended value. In addition, the Kc estimation model based on GDDsoil achieved the best fitting accuracy. We recommend applying this GDDsoil model to mulched drip irrigation of maize in northeastern China to obtain more accurate Kc estimation for optimizing and developing mulched drip irrigation in this region. Keywords: Crop coefficient, Drip irrigation, Maize, Northeastern China, Plastic mulch.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Wenhao Li ◽  
Zhenhua Wang ◽  
Jinzhu Zhang ◽  
Ningning Liu

The lowering of salt content in the field, especially in arid areas, after consecutive application of mulched drip irrigation (MDI) is of vital importance for sustainable cotton plantation. To elucidate the effects of long-term MDI on soil properties and cotton growth, this paper systematically monitored the soil salinity, ion concentrations and the yield of cotton in the field using MDI consecutively for six years in a typical oasis in Xinjiang, China. The results showed that MDI could significantly change salt distribution in the cotton field. During the six years tested, the soil salt content using MDI declined fast at first, and then the decline rate gradually decreased. In the 1st and 2nd year, the average salt content within 0–100 cm soil layer was larger than 20 g kg−1, which belonging to the saline soil. Then the salt content decreased to 10–20 g kg−1 in the 3rd and 4th year, and the cotton field declined to heavily saline soil. After 5 years of MDI, the soil turned to non-salinized. The Cl− and SO42− equivalence ratio (CSER) also decreased with the increase of application years of MDI. Saline-alkaline land developed from chloride-sulphate solonchak (0.2 < CSER < 1) into sulphate solonchak (CSER < 0.2) after 6 years of MDI. The survival rate of the cotton increased from 1.48% (1 year of MDI) to 76.3% (6 years of MDI), and the yield increased from 72.43 kg ha−1 to 4515.48 kg ha−1. When the average CSER, SAR and the soil salinity in 0–140 cm soil layer decreased to 0.60, 0.98 (mol kg−1)0.5 and 6.25 g kg−1, farmers can achieve a balance between income and expenditure. Moreover, when CSER, SAR, and the soil salinity continuously decreased to 0.44, 0.69 (mol kg−1)0.5 and 0.77 g kg−1, the cotton yield will exceed the average production level of cotton in Xinjiang. Under the current irrigation schedule in the oasis irrigation area, the soil salinity and groundwater level after applying MDI could be conducive to cotton growth. However, this situation had also caused a waste of nearly 200 mm of water resources. Therefore, authors suggested that further research on water-saving irrigation systems suitable for different soil conditions should be carried out, and also the differential quota management in production practice should be adopted.


2013 ◽  
Vol 10 (11) ◽  
pp. 14131-14187 ◽  
Author(s):  
Z. Zhang ◽  
F. Tian ◽  
H. C. Hu ◽  
H. P. Hu

Abstract. A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day−1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.


2014 ◽  
Vol 18 (3) ◽  
pp. 1053-1072 ◽  
Author(s):  
Z. Zhang ◽  
F. Tian ◽  
H. Hu ◽  
P. Yang

Abstract. A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day−1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.


Sign in / Sign up

Export Citation Format

Share Document